CONTAMINATION SCREENING EVALUATION REPORT ADDENDUM (POND SITES AND MAINLINE UPDATE)

Florida Department of Transportation District 1

Project Development and Environment Study SR 29 from Oil Well Road to SR 82 Collier County, Florida

> FPID: 417540-1-22-01 ETDM Number: 3752

March 2024

The environmental review, consultation, and other actions required by applicable federal environmental laws for this project are being, or have been, carried out by the Florida Department of Transportation (FDOT) pursuant to 23 U.S.C. § 327 and a Memorandum of Understanding dated May 26, 2022, and executed by the Federal Highway Administration and FDOT.

Executive Summary

The purpose of this Contamination Screening Evaluation Report (CSER) Addendum is to present updates to the original CSER for the State Road (SR) 29 Project Development and Environment (PD&E) Study from Oil Well Road to SR 82 in Collier County, dated July 2018 (FPID: 417540-1-22-01). Two alignments, Central Alternative #1 Revised and Central Alternative #2, were assessed in the *Contamination Screening Evaluation and Pond Siting Report* dated July 2018. This CSER Addendum assesses the preferred alignment (Central Alternative #2). This addendum outlines changes to sites previously identified in the July 2018 CSER, describes new sites located along the preferred alignment, and assigns contamination risk ratings to proposed stormwater pond sites. The limits associated with this CSER Addendum begin at the intersection at SR 29 / County Road (CR) 846 and extend to the SR 29 / SR 82 intersection (**Figure 1**). The "project area" includes the existing and proposed right-of-way (ROW) for the preferred alignment, including pond sites. The "study area" includes the project area and contamination site search distances of 500-feet, 1,000-feet, and ½ mile.

The pond sites discussed in the July 2018 CSER have been revised due to project design changes. While the footprint for some pond sites remained unchanged, others were modified, and one pond site was added. A total of 9 pond sites were assessed in this CSER Addendum.

This CSER Addendum has been prepared in general accordance with the PD&E Manual (July 1, 2023). Desktop research was performed for a total of 50 contamination sites (including 8 new sites) and 9 ponds. No field reviews were performed. **Table 1** and **Table 2** below present summaries of the risk ratings assigned to the contamination sites and ponds:

Table 1 – Contamination Site Risk Rating Summary								
High	High Medium Low No							
4	18	23	5					

Table 2 – Pond Site Risk Rating Summary								
High	High Medium Low No							
0	7	1	1					

Based on the conclusions of the study and the risk ratings noted above, the following recommendations are made for this project:

- No further evaluation is recommended for the contamination sites or pond sites assigned risk ratings of No or Low as they are not expected to have contamination involvement.
- A total of 4 High and 25 Medium rated contamination sites/ponds were identified within the study area and should be considered for Level II testing. Level II testing is performed to assess the presence/absence of contamination, identify impacts to construction, and to develop site-specific recommendations. Level II activities are performed by the Florida Department of Transportation's (FDOT's) Contamination Assessment and Remediation (CAR) contractor and should be completed prior to ROW acquisition and construction. Typically, the Level II testing

is performed during the design phase and can include soil borings, monitoring well installation, soil and groundwater sampling, laboratory testing, Organic Vapor Analyzer (OVA) screening, boundary surveys, additional file research, and/or Ground Penetrating Radar (GPR) surveys. Further evaluation and Level II testing, at the discretion of the District Contamination Impact Coordinator (DCIC), is recommended for these 29 High and Medium rated locations.

- Note, one of the Medium rated sites is a buried petroleum pipeline (Site 69 Sunniland Pipeline). The precise location of the pipeline was not reasonably ascertainable. The pipeline should be presumed to contain petroleum products and caution should be exercised during construction activities. GPR and assessment tasks are warranted prior to construction to identify the precise location of the pipeline and any soil/groundwater impacts.
- Level II testing costs are estimated at \$2,000 to \$10,000 per site. If impacts are identified during Level II testing, Level III support activities such as source removal and/or dewatering may be required during construction and are estimated at \$50,000 to \$100,000 per site.
- Once final design plans are available, additional review is recommended in consideration of dewatering operations that may be necessary under the National Pollutant Discharge Elimination System (NPDES) Generic Permit for Stormwater Discharges from Large and Small Construction Activities. Verification testing may be warranted for contamination issues within 500 feet of the dewatering area.

Table of Contents

5.0	Conclusions and Recommendations	17
4.0	Project Impacts	5
3.0	3.1 Determination of Potential Risk	
3.0	Methodology	
2.0	Project Description	1
1.0	Introduction	1

Appendices

CSER Appendix A	Contamination Site Map
CSER Appendix B	Supplemental Information

1.0 Introduction

A PD&E Public Hearing was held on November 15, 2018, to present the Preferred Alternative and provide the public with the opportunity to review project documents and provide comments. Refinements to the Preferred Alternative have been made to meet the FDOT Design Manual requirements and include the identification of stormwater management facilities necessary to accommodate stormwater runoff. This CSER Addendum supplements the *Contamination Screening Evaluation and Pond Siting Report* dated July 2018 and specifically addresses the design refinements for the project. See **Figure 1 – Project Location Map**.

The purpose of this report is to present the findings of a contamination screening evaluation for 9 pond sites, any new contamination sites, and an update to previously identified contamination sites. This report identifies and evaluates known or potential contamination sites within or in close proximity to the SR 29 ROW and pond sites, that may affect implementation of the project. This is referred to as the "project area" throughout this report. The PD&E *Contamination Screening Evaluation and Pond Siting Report* (FPID 417540-1) dated July 2018 was reviewed and relevant information is referenced herein.

2.0 Project Description

<u>CR 846 to SR 29 Bypass Junction</u>: the proposed new signalized intersection at CR 846 and the proposed intersection at Gopher Ridge Road have been revised to roundabouts. The proposed ROW requirement previously varied from 108 feet to 200 feet and has been increased to varying from 144 feet to 250 feet. The two 11-foot travel lanes in each direction have been increased to 12-foot travel lanes in each direction from CR 846 to Gopher Ridge Road. The 6-foot sidewalk and 7-foot buffered bicycle lanes in each direction have been replaced with 12-foot shared use paths from CR 846 to Gopher Ridge Road. Twelve-foot shared use paths have been added to both sides of the corridor from Gopher Ridge Road to the SR 29 Bypass Junction. As a result of criteria updates, the proposed design speeds, ranging from 45-50 miles per hour (mph), have been identified. The three proposed SMFs will require approximately 22 acres of offsite ROW. Stormwater runoff will be conveyed to the proposed SMFs by an open drainage system within the existing mainline ROW.

North of New Market Road West to SR 82: the currently existing signalized intersection at New Market Road West and SR 29 has been revised to a roundabout. A 10-foot shared use path has been added on the east side of the roadway from north of New Market Road West to SR 82, thus providing a 10-foot shared use path on both sides of the corridor. The mainline roadway improvements required for the proposed project will not require any additional ROW. As a result of criteria updates, the proposed design speeds, ranging from 50-60 mph, have been unified at 55 mph. Six SMFs have been identified. The six proposed SMFs will require approximately 20.3 acres of offsite ROW. Stormwater runoff will be conveyed to the proposed SMFs by an open drainage system within the existing mainline ROW.

Figure 1 – Project Location Map

3.0 Methodology

This CSER Addendum was performed in general accordance with the FDOT PD&E Manual (July 1, 2023). The evaluation included the following tasks:

- Identify and evaluate new contamination sites,
- Review and update risk ratings of contamination sites identified in the *Contamination Screening Evaluation Report and Pond Siting Report,* SR 29 Immokalee PD&E Study from Oil Well Road to SR 82, FPID 417540-1-22-01, dated July 2018,
- Review the *Level I Contamination Screening Evaluation Report (Pond Alternatives)*, FPID 417540-6-52-01, dated October 22, 2020 (FDOT comments were addressed),
- Review the Contamination Screening Evaluation Report, Addendum to Include Recommended Pond Sites and Mainline Changes dated February 16, 2024 (FPID 417540-5-52-01); (FDOT comments were addressed),
- Review of the adjoining north *Final Level II Field Screening Report Final Ponds* dated July 6, 2017 (FPID 417878-4-52-01),
- Document review using the Collier County Property Appraiser's website to identify property owner names, address, and property boundaries to assist in determining land use information or other contamination-related details,
- A regulatory review of government databases for permits and/or violations associated with contamination issues,
- Determining the contamination potential and assigning a risk rating for each contamination site, and each pond site alternative within the project limits. The FDEP Map Direct and OCULUS databases and United States Environmental Protection Agency (EPA) databases were used to identify sites, facilities, or listings within the study area containing documented or suspected petroleum contamination or other hazardous materials. All are reviewed for their potential contamination impacts to the project area. This report utilizes the recommended search distances included in the FDOT PD&E Manual (July 1, 2023), as follows:
 - o 500-feet from the ROW line for petroleum, drycleaners, and non-petroleum sites,
 - 1,000-feet from the ROW line for non-landfill solid waste sites (such as recycling facilities, transfer stations, and debris placement areas), and
 - ½-mile from the ROW line for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), National Priorities List (NPL) Superfund sites, or Landfill sites.
- No field reconnaissance was performed for this evaluation.

3.1 Determination of Potential Risk

After gathering and reviewing all readily available public information, contamination risk ratings were assigned to sites of potential contamination concern and pond sites. The rating system is divided into 4 categories of risk as defined by the FDOT in the PD&E Manual (July 1, 2023). These 4 degrees of risk ratings are No, Low, Medium, and High. This system expresses the degree of concern for potential contamination problems.

No - A review of available information on the property and a review of the conceptual or design plans indicates there is no potential contamination impact to the project. It is possible that contaminants have been handled on the property. However, findings from the Level I evaluation indicate that contamination impacts are not expected.

Low - A review of available information indicates that past or current activities on the property have an ongoing contamination issue; the site has a hazardous waste generator identification (ID) number, or the site stores, handles, or manufactures hazardous materials. However, based on the review of conceptual or design plans and/or findings from the Level I evaluation, it is not likely that there would be any contamination impacts to the project.

Medium - After a review of conceptual or design plans and findings from a Level I evaluation, a potential contamination impact to the project has been identified. If there is insufficient information (such as regulatory records or site historical documents) to make a determination as to the potential for contamination impact, and there is reasonable suspicion that contamination may exist, the property should be rated at least as a Medium. Properties used historically as gasoline stations and which have not been evaluated or assessed by regulatory agencies, sites with abandoned in place underground petroleum storage tanks or currently operating gasoline stations should receive this rating.

High - After a review of all available information and conceptual or design plans, there is appropriate analytical data that shows contamination will substantially impact construction activities, have implications to ROW acquisition or have other potential transfer of contamination related liability to the FDOT.

At the request of the FDOT District 1 DCIC, all sites located within 500-feet of the ROW with open/active discharges (identified using state and/or federal regulatory databases) shall be assigned a risk rating of High or Medium since these sites have the potential to affect at least the permitting for the National Pollutant Discharge Elimination System (NPDES) Generic Permit for Stormwater Discharges from Large and Small Construction Activities dewatering activities.

The contamination risk rating can subsequently change based on changes in design, construction activities, construction methods, ROW needs, or other factors when the project progresses from PD&E to Design and Construction.

4.0 Project Impacts

The project area includes the existing and proposed ROWs and pond sites. When facilities/sites are identified in proximity to the ROW, they are assigned a risk rating using the FDOT's standard methodology (High, Medium, Low, or No). In a similar manner, pond sites are assigned a risk rating so they can be evaluated as part of the overall engineering design process. Details for the contamination sites are provided in **Table 3** and pond sites are provided in **Table 4**. Contamination sites, ponds, and search buffers are shown on the 2021 aerial photograph presented in **CSER Appendix A**. To remain consistent with the July 2018 *Contamination Screening Evaluation and Pond Siting Report*, contamination site numbers were maintained. The "FA" designation was used in the 2018 CSER and indicates the contamination site was identified from "historical maps, field reconnaissance, and aerial reviews." A total of 8 new contamination sites (Sites 67-74) presented in this report were identified subsequent to the July 2018 *Contamination Screening Evaluation and Pond Siting Report*.

					Table 3 – Contamination Sites Risk Rat	tings	
Site ID	Site Name & Address	Databases/ Facility ID/ Or Other Source	Distance from Project Area	Contaminants of Concern	Risk Ratings from July 2018 Contamination Screening Evaluation and Pond Siting Report (* indicates High or Medium rated contamination site located within the proposed ROW)	Updates since 2018 CSER	Risk Rating
FA-11	Blocker's Furniture LLC 110 12th Street	None found	Adjacent south	Diesel, Jet A	This site was previously assigned a risk rating of Low due to a separation distance of 400 feet, and no reported discharges.	No changes. Given the separation distance of 400 feet, and no reported discharges, this site retains a risk rating of Low.	Low
FA-12	Floyd Crews Property 861 CR 846	None found	Adjacent south	Diesel, Waste oil	This site was previously assigned a risk rating of Medium due to the historic use as a well drillers lay down yard from 1999 to 2017 with one AST and three drums noted on Google Earth Street View imagery in 2011. No regulatory files were found.	No changes. Given the historic use as a well drillers lay down yard with one AST and three drums, this site retains a risk rating of Medium.	Medium
FA-13	Immokalee Fire Control District 502 New Market Rd	None found	Adjacent west	Diesel	This site was previously assigned a risk rating of Low given the separation distance of 300 feet for an emergency generator with integral AST (less than 500-gallons).	Immokalee Fire Station 30 was constructed under an NPDES General Permit issued on September 10, 2021 and terminated on September 1, 2023. FDEP documentation shows two (2) ASTs installed in June 2023 including a 3,000-gallon diesel tank and 500-gallon (unregulated) tank. Both tanks are located behind the building (CSER Appendix B). Based on the recent construction, location of ASTs on pavement, and the canal between this site and the mainline, this site retains a risk rating of Low.	Low
FA-14	All Star Truck Brokers (also J&B Rentals of Immokalee LLC, David H Carter Trust property) 19301 Immokalee Rd	None found	230 feet south	Solvents, Waste oil	This site was previously assigned a risk rating of Medium. Former J&B Rental (yard equipment rentals), 2 55-gallon drums observed in C1R proposed ROW during 2014 field review, 2011 Google Earth Street View and 2015 Bing Maps Streetside, stained soils noted at the base of the drums. During 2017 field review signage notes site as All Star Truck Broker's, drums removed, impacted soils may be <i>de minimis</i> .	No changes. Given the historic use as yard equipment rentals with two drums and the lack of information on the observed stains, this site retains a risk rating of Medium.	Medium
FA-15	Pond 31-C2 Gopher Ridge I Joint Venture Parcel IDs 00087520008 and 00087440007	None found	Within	Pesticides, Herbicides	* This site was previously assigned a risk rating of Medium since it was a grove within the project area.	No changes. Given the groves located within the project area, this site maintains a risk rating of Medium.	Medium
FA-16	Gopher Ridge I Joint Venture Parcel ID 00087520008	None found	Within	Pesticides, Waste oil, Diesel	* This site was previously assigned a risk rating of Low. This site contains a former staging area within an existing citrus grove. No issues were discovered during a March 2018 field review during preparation of the 2018 CSER. The site's rating was increased to Medium due to the presence of the citrus grove where surface and subsurface soils may contain application levels of pesticides and herbicides.	No changes. The site's risk rating was increased to Medium due to the presence of the citrus grove where surface and subsurface soils may contain application levels of pesticides and herbicides.	Medium

					Table 3 – Contamination Sites Risk Rat	tings	
Site ID	Site Name & Address	Databases/ Facility ID/ Or Other Source	Distance from Project Area	Contaminants of Concern	Risk Ratings from July 2018 Contamination Screening Evaluation and Pond Siting Report (* indicates High or Medium rated contamination site located within the proposed ROW)	Updates since 2018 CSER	Risk Rating
FA-17	Gopher Ridge I Joint Venture Parcel ID 00087440007	None found	Within	Pesticides, Herbicides	This site was previously assigned a risk rating of Medium. The proposed corridor is located within a citrus grove in this area. Groves have the potential to contain elevated contaminants related to herbicide and pesticide applications. Property appraiser notes the parcel land use as orchard groves, citrus, etc.	No changes. Given the existence of citrus groves within the project area, this site retains a risk rating of Medium.	Medium
FA-18	Gopher Ridge I Joint Venture Parcel ID 00068760007	None found	Within	Pesticides, Herbicides	This site was previously assigned a risk rating of Medium. The proposed corridor is located within a citrus grove. Groves have the potential to contain elevated contaminants related to herbicide and pesticide applications. Property appraiser notes the parcel land use as groves, citrus, etc.	No changes. Given the existence of citrus groves within the project area, this site retains a risk rating of Medium.	Medium
FA-19	Barron Collier Partnership Parcel 00067880001	None found	Adjacent east	Pesticides, Herbicides	This site was previously assigned a risk rating of Medium due to historic use as groves and location within the ROW.	No changes. Given the existence of citrus groves within the project area, this site retains a risk rating of Medium.	Medium
FA-20	Barron Collier Partnership Parcel 00067880001	None found	Adjoining east	Pesticides, Herbicides	Same parcel as FA-19. This site was previously assigned a risk rating of Medium given the use as groves and location within the limits of Pond 39 and FPC E.	Although the parcel adjoins the ROW, given the separation distance (with an unpaved road and ditch) of the actual groves 80 feet east, the risk rating is changed from Medium to Low.	Low
FA-21	Florida Power & Light Immokalee Solar Energy Center (Former Barron Collier Partnership) Parcel 000650000003 3350 SR 29	None found	Adjoining east	Pesticides, Herbicides, PCBs, TRPH, Lead	This site was previously assigned a risk rating of Medium given the use as groves.	Aerial photographs first depict the solar farm and electrical substation in 2022. Contamination concerns at electrical substations typically include Polychlorinated Biphenyls (PCBs), petroleum- based fluids, and lead from batteries. The electrical substation is located over 250 feet east of the ROW. Other than the electrical substation, contamination concerns associated with the solar farm were not found. No regulatory files were found. Given the redevelopment as a solar farm, including an electrical substation in 2022, potential residual impacts associated with former groves were mitigated. Given potential impacts from the former groves were mitigated, and the separation distance, and lack of reported contamination concerns associated with the electrical substation, the risk rating is changed from Medium to Low.	Low
21	Everglades farm Equipment (also Sandland Equip. Corp.) 800 E Main St	TANKS 9803972 STRCRA FLD984227603	Adjacent south	Waste oil	This site was previously assigned a risk rating of Low. Existing equipment rental and sales (farm management services), Conditionally Exempt Small Quantity Generator (CESQG) with several violations resolved in 2008, covered maintenance 100 feet southwest of corridor, exterior equipment storage adjacent southwest, waste oil AST within 130 feet of proposed project corridor.	No Changes. Given the separation distance, and lack of reported discharges, this site retains a risk rating of Low.	Low
22	Winfield Solutions (also Prosource One, AGRO Distribution)	LUST 9102828 STRCRA FLR000064626	Adjacent south	Diesel, Waste oil	This site was previously assigned a risk rating of Medium. Existing agricultural chemical wholesales, LUST dibromoethane (EDB) spill 1999 contained within warehouse structure, 7-pesticide (non-regulated) ASTs within warehouse structure, former ASTs closed in 2012, no contamination reported in closure report, former ASTs adjacent and south of proposed CR 846 ROW, CESQG with no violations.	No Changes. Given the confined nature of the 1999 spill within the warehouse structure, and no contamination encountered during closure activities, this site is reassigned a risk rating of Low.	Low

					Table 3 – Contamination Sites Risk Rat	tings	
Site ID	Site Name & Address	Databases/ Facility ID/ Or Other Source	Distance from Project Area	Contaminants of Concern	Risk Ratings from July 2018 Contamination Screening Evaluation and Pond Siting Report (* indicates High or Medium rated contamination site located within the proposed ROW)	Updates since 2018 CSER	Risk Rating
24	HBS Florida Specialties LLC (also Collier Farms Inc.) 601 E Main St	NONSTD FLTMP9404633	Adjacent south	None	This site was previously assigned a risk rating of No. Existing produce packaging plant, CESQG no violations, temporary Environmental Protection Agency (EPA) ID number created to facilitate the removal of 21 drums containing various pesticides. As indicated on the Waste Manifest, the drums were removed from the Collier Farms Crows Nest Facility located 13.2 miles east of the database geocoded location. No OCULUS records after 1994.	No Changes	No
26	Combs Oil Co Immokalee Bulk Facility (also Balgas, Combs Oil Co Immokalee Truck Stop, and N & R Gas Station) 525 East Main Street (also listed at 527 East Main Street)	LUST 8839434 LUST 8839176	Adjacent southwest	Fuel oil, Gasoline, Diesel	This site was previously assigned a risk rating of High due to historic use as a gas station. Closed retail gas station, 3- gasoline USTs and 1-diesel UST removed 2001, DRF 1993, NFA 2003, former USTs and dispensers within 15 feet of existing project corridor. Historical groundwater plume within existing project corridor, groundwater flow to north, no OCULUS files after 2004. Existing bulk storage facility, 10-diesel USTs removed 1988, 2- gasoline USTs in service, DRF 1992, remedial action concluded 2012, PARM on-going, PLIRP 1993, former and existing USTs 150 feet south of proposed project corridor. A High rank was imposed should project improvement activities include groundwater controls (requiring NPDES Permitting) in areas within 500 feet of this site.	FDEP Documentation for this site includes a prior CSER-PARM Report submitted in July 2017 (Appendix B), with quarterly reports continuing through July 2020. A Remedial Action Interim Report was submitted July 2021 (CSER Appendix B). A Discharge Report Incident Notification Form was submitted on August 1,2023 for Interstitial monitoring-for gasoline which was found during vacuum/pressure change. Documentation for Tank #2R1 (a 12,000-gallon gasoline tank) is out of service. The FDEP suspended cleanup activities in June 2022 funded under the Petroleum Restoration Program following major violations in an October 2021 inspection. Documentation for Tanks #1R1 (12,000-gallon diesel), #3R1 (10,000-gallon diesel), and #4R1 (5,000-gallon gasoline) were listed out of service on December 12, 2022. The last Compliance Inspection dated October 25, 2023 (CSER Appendix B) resulted in a Major Out of Compliance finding for no financial responsibility insurance, lack of monitoring and operability testing records, tank overfill protection, and failure to submit an Incident Notification Form (subsequently submitted in August 2023). If development activities are planned in an area where groundwater pumping, dewatering, or excavation at or below the groundwater table is anticipated, further Level II testing by DCIC may be recommended. Refer to the PD&E Manual (2023) for additional information on Dewatering During Construction, guidance for Water Quality Impact Evaluation, and NPDES permitting. Given the open discharge dated August 1, 2023, and the facility's location adjacent southwest to the project area, and may affect NPDES permitting if dewatering is required, this site retains a risk rating of High.	High
28	Davis Oil Company (also Sunoco Gas Station, Gator Food Store, and Oleum Corp) 726 East Main Street (also listed at 730 East Main Street)	LUST 8518121 LUST 8518087 VOLCLNUP COM_291326	Adjacent southeast	Gasoline, Diesel, Avgas, Lead, Waste oil	This site was previously assigned a risk rating of High. Existing bulk storage facility, 1-leaded gasoline UST removed 1989, 2- aviation gas USTs removed 1991, 4-gasoline and 2-diesel ASTs in service, DRF 1994, source removal 1994, SRCO 2008, historical impacts reported within 35 feet of existing project corridor. Existing retail station, gasoline and diesel dispensers serviced via underground piping from ASTs at bulk storage facility to southeast (see above), 1-waste oil UST and oil water separator removed 1994, DRF 1994 (with above), SRCO 2008 (with above), historical impacts reported within 10 feet of existing project corridor.	The site is currently a Sunoco Gas Station. Given the nature of this site as an active retail station, this site is reassigned a risk rating of Based on the previous history and current use as a retail gas station, the risk rating remains High.	High
29	Perrydale Farms LLC (also Farm Op Inc.) 403 Main St	TANKS 8518312	420 feet west	Gasoline, Diesel	This site was previously assigned a risk rating of Low since it was a former non-retail agricultural facility with 1-gasoline and 1-diesel AST removed in 1998, no discharges reported, suspect AST locations on 1993 aerial photograph.	No Changes Given the separation distance and no reported discharges, this site retains a risk rating of Low.	Low

					Table 3 – Contamination Sites Risk Rat	tings	
Site ID	Site Name & Address	Databases/ Facility ID/ Or Other Source	Distance from Project Area	Contaminants of Concern	Risk Ratings from July 2018 Contamination Screening Evaluation and Pond Siting Report (* indicates High or Medium rated contamination site located within the proposed ROW)	Updates since 2018 CSER	Risk Rating
30	Davis Oil Company Service Center 524 E Main St	LUST 8521250, 8629389 INDWST FLG910977	Adjacent northwest	Gasoline, Diesel	This site was previously assigned a risk rating of High. Former bulk storage facility and retail station, DRF 1991, CAR 1992, RAP, 1992, O&M 1994-1995, bulk facility and station burned down 1995, DRF 1996, IRA 1996, CAR 1999, RAP MOD 2004, SSA 2006, SRCO 2014 (INDWST-general long term petroleum cleanup permit – FLG910977), groundwater flow generally to the south.	Given the issuance of the general long term petroleum cleanup permit and proximity to the project area, this site retains a risk rating of High	High
31	Collier County - Immokalee Airport Site 165 Airpark Boulevard	SLDWST 00098127	Within	None	This site was previously assigned a risk rating of Low. Class 910 disaster debris management site, temporary solid waste storage and processing area for yard and demolition wastes.	This site was a pre-authorized Disaster Debris Management Site (DDMS) between 2018-2023. The site was authorized on October 5, 2022 to store and process debris from Hurricane Ian but no records show it was utilized (CSER Appendix B). Based on the lack of use as a debris management site, the risk rating remains Low.	Low
32	Doug's Garage 535 New Market Rd	STRCRA FLR000115261	200 feet north	Waste oil, Solvents	This site was previously assigned a risk rating of Medium. Verified non-generator or handler, no violations reported, source removal conducted on this site as a result of 1995 discharge from the adjacent property to the south, see site 30, out of service AST with no labelling observed during August 16, 2017 site visit.	No Changes. Given the unresolved contamination issues (also associated with Site 30), this site retains a risk rating of Medium.	Medium
33	Flores Tire (also Lebonberger) 528 New Market Rd	STRCRA FLR000059709	190 feet west	Waste oil, Solvents	This site was previously assigned a risk rating of Medium. Existing tire sales and auto-repair facility, former exterior above ground maintenance lifts, CESQG with 1 violation resolved in 1999, no records after 1999.	No Changes. Given the reasonable suspicion of unreported discharges, this site retains a risk rating of Medium.	Medium
34	Crop Production Services, Inc. 116 Jerome Drive,	TANKS 9602496 STRCRA FLR000072082 BRS FLT950052100	460 feet northwest	Pesticides, Arsenic, Lead	This site was previously assigned a risk rating of Low. Existing agricultural wholesales, 4-pesticide (non-regulated) ASTs within structure and secondary containment currently in service, former CESQG with no violations, BRS notes one time removal of 5 tons of Lead Arsenate stock in original containers.	The site is an active Conditionally Exempt SQG and Episodic LQG. FDEP Documentation from June 14, 2018 shows that two (2) 2,500-gallon pesticide tanks were removed. Additionally, two (2) 3000-gallon AST pesticide storage tanks were installed in June 2021. The site owner has been changed to Nutrien AG Solutions (STCM ID #81281) and the site was in compliance according to the latest inspection dated November 19, 2020 (CSER Appendix B). Due to the distance of this site from the mainline and recent compliance reports, the risk rating for this site remains Low.	Low
35	Immokalee Auto General Repair (also Ven-Mar, Farmers Supplies, and FMC Corp ACG) 524 New Market Rd	TANKS 9200993 STRCRA FLD131518839	160 feet west	Diesel, Waste oil, Solvents	This site was previously assigned a risk rating of Low. Existing auto repair and truck rentals, former agricultural irrigation sales and new project coordination farm development, one 1,000-gallon diesel AST removed 1992 with no discharges reported, former CESQG with no violations and no records after 1985.		Low
37	Shell-Stricks (also Strickland property) 520 New Market Rd	LUST 8518290	105 feet west	Gasoline, Diesel, Waste oil, Solvents	This site was previously assigned a risk rating of No. Existing auto repair and former retail station, DRF 1996, SAR 2002, RAP 2003, SRR 2004, MOP 2005-2005, SRCO 2006, groundwater flow to northeast, drainage canal between site and proposed corridor.	No Changes. Given the separation distance and regulatory status, this site retains a risk rating of No.	No
38	Immokalee Airport Area Brownfield	BRWNFLDS BF110401000	See Sites 38	8A to 38H and 48 (N	Io risk rating assigned for Site 38)		

					Table 3 – Contamination Sites Risk Rat	tings	
Site ID	Site Name & Address	Databases/ Facility ID/ Or Other Source	Distance from Project Area	Contaminants of Concern	Risk Ratings from July 2018 Contamination Screening Evaluation and Pond Siting Report (* indicates High or Medium rated contamination site located within the proposed ROW)	Updates since 2018 CSER	Risk Rating
38A	Immokalee Airport (also Former Airwork Fuel Farm Area)	LUST 8518639	Within	Jet fuel, Avgas, Gasoline, Solvents	This site was previously assigned a risk rating of Medium. Airwork aircraft washing area and former fuel farm. DRF 1990 following removal of UST farm, no cleanup required, DRF closed in 2001, and AST farm removed in 2011. No impacts above cleanup limits detected in soil or groundwater during AST closure.	No Changes. Given the location of this site within the project area and potential for residual contamination, this site retains a risk rating of Medium.	Medium
38B	Airwork Pesticide Staging Area - Immokalee Regional Airport	STRCRA FLR000107144	Within	Pesticides, Metals	This site was previously assigned a risk rating of Medium. Existing pesticide storage and aircraft dispensing area, several metals and pesticides were detected in soil samples collected in 2004, only malathion exceeded cleanup criteria, no groundwater impacts reported in 2005.	No Changes. Given the unresolved soil contamination, this site retains a risk rating of Medium.	Medium
38C	Former Johnson Fuel Farm - Immokalee Regional Airport	None found	Within	Avgas, Gasoline	This site was previously assigned a risk rating of Medium. Former fuel farm area depicted on a 1990 Airport Layout Plan, suspect location noted in 1963, 1973, and 1984 aerial photographs, no regulatory information found. The historical fuel farm is within 30 feet of CR 846 ROW, and proposed C2 Alternative.	No Changes. Given the former fuel farm located within 30 feet of the project area and lack of regulatory files, this site retains a risk rating of Medium.	Medium
38D	Former Unnamed Hanger - Immokalee Regional Airport	None found	Within	Avgas, Oils, Solvents	This site was previously assigned a risk rating of Medium. Former hanger and tie down areas, noted on 1963, 1973, and 1984 aerial photographs, no regulatory information found. The historical hanger is within the proposed C2 Alternative Corridor.	No Changes. Given the location of the former hanger and reasonable suspicion of unreported discharges during fueling and/or maintenance operations within the project area, this site retains a risk rating of Medium.	Medium
38E	Former South Johnson Hangers - Immokalee Regional Airport	None found	Within	Avgas, Oils, Solvents	This site was previously assigned a risk rating of Medium. Former hanger and tie down areas, depicted on a 1980 Airport Layout Plan, suspect location noted on 1963, 1973, and 1984 aerial photographs, no regulatory information found. The historical hangers are within the proposed C2 Alternative Corridor.	No Changes. Given the location of the former hanger and reasonable suspicion of unreported discharges during fueling and/or maintenance operations within the project area, this site retains a risk rating of Medium.	Medium
38F	Former Crapse Hanger - Immokalee Regional Airport	None found	Within	Avgas, Oils, Solvents	This site was previously assigned a risk rating of Medium. Former hanger and tie down areas, depicted on a 1980 Airport Layout Plan, suspect location noted on 1963, 1973, 1984, and 1994 aerial photographs, no regulatory information found. The historical hanger is within the proposed C2 Alternative Corridor.	No Changes. Given the location of the former hanger and reasonable suspicion of unreported discharges during fueling and/or maintenance operations within the project area, this site retains a risk rating of Medium.	Medium
38G	Former North Johnson Hangers - Immokalee Regional Airport	None found	Within	Avgas, Oils, Solvents	This site was previously assigned a risk rating of Medium. Former hangers and tie down areas, depicted on a 1980 Airport Layout Plan, suspect location noted on 1973 aerial photograph, the historical hangers are within the proposed C2 Alternative.	No Changes. Given the location of the former hanger and reasonable suspicion of unreported discharges during fueling and/or maintenance operations within the project area, this site retains a risk rating of Medium.	Medium
38H	Immokalee Airport - Former Hatfield Fuel Farm Area	None found	Within	Avgas, Gasoline	This site was previously assigned a risk rating of Low. Former fuel farm area depicted on a 1980 Airport Layout Plan, suspect AST noted on 2004 and 2005 aerial photographs, suspect fuel dispenser noted on 1984 aerial photograph, no regulatory information found.	No Changes. Given the lack of reported discharges, this site retains a risk rating of Low.	Low

					Table 3 – Contamination Sites Risk Ra	tings	
Site ID	Site Name & Address	Databases/ Facility ID/ Or Other Source	Distance from Project Area	Contaminants of Concern	Risk Ratings from July 2018 Contamination Screening Evaluation and Pond Siting Report (* indicates High or Medium rated contamination site located within the proposed ROW)	Updates since 2018 CSER	Risk Rating
39	South Florida Packers (also Nobles Collier and A&A Produce) 212 Jerome St	LUST 9501563	475 feet west	Gasoline, Diesel, Lead	This site was previously assigned a risk rating of Medium. Former retail station, two leaded gasoline USTs and one diesel UST removed 1977, DRF 1995, CAR 1995, MOP 1999, SRCO 2004, groundwater flow to southwest.	No Changes. Given the proximity to the project area, this site retains a risk rating of Medium.	Medium
43	Fl Dept of Agriculture/ Consumer - Immokalee State Farmers Market 424 New Market Rd	STRCRA FLR000105221	495 feet south	Solvents, Waste oil	This site was previously assigned a risk rating of Low. Existing farmers market, verified non-generator, no violations reported, however eleven areas of concern were noted during an inspection of Unit 12 (the former David C. Brown produce packing house) conducted on January 28, 2004, the concerns (located mainly in the equipment and vehicle wash down area) were rectified and the case closed on March 11, 2004, no records in OCULUS after the case closed date. This site is immediate up-gradient to former water supply well (#203) associated with the Immokalee Airport (potable) Water Treatment Plant (Site 48) the trace levels of solvents detected in well #203 in 2003 are suspected to have originated from the Site 43 Unit 12 wash down area.	No Changes. Given the regulatory status, and intervening canal, this site retains a risk rating of Low.	Low
48	Immokalee Airport Water Treatment Plant Airport Service Rd	STRCRA FLR000107698	Within	Sodium hypochlorite, Ammonium sulfate, Diesel	This site was previously assigned a risk rating of Low. Existing potable water supply wells, treatment, and storage facility. Chemical storage area 210 feet east of proposed corridor. Deisel powered generator 390 feet east of the proposed corridor, no records found after 2006. A former water supply well (#203) for this site is immediate down-gradient of Site 43 (Immokalee State Farmers Market – Unit 12), trace levels of solvents were identified in this well #203 in 2003, well #203 was abandoned sometime after 2006.	No Changes.	Low
53	Smith's Wrecker Service 1000 Alachua St	STRCRA FLR000104836	415 feet west	Waste oil, Batteries, Tires	This site was previously assigned a risk rating of No. Existing storage and auto salvage yard, CESQG with eight violations, five resolved in 2004, and three resolved in 2005, no records found after 2005.	No Changes. Given the separation distance, this site retains a risk rating of No.	No
56	M & M Salvage and Used Auto Parts, Inc. (also Immokalee Waste Tire Site/Robert's Auto Salvage, W & T Salvage Yard, and Jay's Towing) 106 Dixie Avenue E	LUST 9805236 STRCRA FLR000024554 SLDWST 95582	230 feet southwest	Gasoline, Waste oil, Batteries, Tires	This site was previously assigned a risk rating of Low. The existing auto salvage yard is 210 feet southwest of the Central Alternative 2 corridor. LUST - one waste oil AST in service, DRF 2002, NFA 2003, small amounts of oil impacted soil were removed from two areas over 500 feet from corridor, no groundwater impacts reported, last LUST entry 2003. STRCRA-CESQG with twelve violations, three resolved in 1997 and nine resolved in 2004, last STRCRA entry 2005. The SLDWST files report the removal of over 50,000 tires from the site and adjacent areas, last SLDWST entry 2011.	This site has an open out-of-compliance case according to a Compliance Assistance Offer (CAO) letter dated August 28, 2023 (CSER Appendix B). An inspection on June 12, 2023 stated the facility is no longer in operation, but holds an active NPDES MSGP (FLR05H006). To close the permit, the facility will have to remove all potential pollutant sources (pile of tires and old auto parts) to be in compliance.	
58	Huapilla Produce Inc. (also Flores Son's Truck Tires and Browning Brothers Palm 213 W Madison Ave	TANKS 8518201 NONTDS FLR000066035	480 feet southwest	Diesel, Waste oil	This site was previously assigned a risk rating of Low. Existing produce transporter, former used tire disposal SLDWST, former palm tree sales, TANKS one diesel AST removed 2001 and one waste il AST reported as in service, no discharges reported, site appeared vacant with no AST in August 2017 field review, former CESQG with no violations, no records found in OCULUS after 2000.		Low

					Table 3 – Contamination Sites Risk Rat	tings	
Site ID	Site Name & Address	Databases/ Facility ID/ Or Other Source	Distance from Project Area	Contaminants of Concern	Risk Ratings from July 2018 Contamination Screening Evaluation and Pond Siting Report (* indicates High or Medium rated contamination site located within the proposed ROW)	Updates since 2018 CSER	Risk Rating
60	K&B Commercial Rentals #1 (also Top Auto Parts) 314 W New Market Rd	STRCRA FLR000064675	485 feet south	None	This site was previously assigned a risk rating of Low. Existing church and former auto parts store, no violations reported, no records found after 2011.	No Changes. Given the separation distance, and lack of reported discharges, this site retains a risk rating of Low.	Low
62	Styes on the Edge (Former Country Cleaners of Immokalee) 1255 N. 15 th Street	TANKS 9501904 FLR000049999	470 feet south	Drycleaning solvents	This site was previously assigned a risk rating of Medium since it was an open discharge (drycleaning solvent) within 500 feet which may affect NPDES permitting if dewatering is required.	This site was issued an SRCO in March 2019. Although the parcel is located 470 feet south of the project limit, the former drycleaners building (source) was located over 650 feet south of the south project limit. Given the regulatory status and separation distance, the risk rating is changed from Medium to No.	No
65	University of Florida IFAS Southwest Florida Research and Education Center (SFREC) 2685 SR 29	TANKS 8735911 HAZARD WASTE FLD981470016	Adjacent west	Petroleum, Pesticides, Herbicides	This site was assigned a risk rating of Low given the separation distance to contamination concerns including a "dump area" with pesticide impacts 2,230 feet west; and ten petroleum storage tanks, the nearest being over 400 feet west of the ROW, with no reported discharges.	Collier County issued a Return to Compliance letter for broken gauges and lack of overfill prevention device testing (noted during the routine April 13, 2023 inspection) associated with petroleum storage tanks on February 6, 2024 (CSER Appendix B). No discharges were reported. Given the separation distance of over 400 feet to the nearest contamination concerns, this site retains a risk rating of Low.	Low
66	Silver Strand Orange Grove 0.5 miles south of SR 82	NONTSD FLT010067312	Adjacent east	Pesticides, Herbicides	This site was previously assigned a risk rating of Low given the grove located adjacent east with an emergency generator number created in 2001 to remove seven drums of aldicarb (suspected location over 3,300 feet east). No cleanup issues were reported. A "decon unit" was observed 230 feet east of existing SR 29 ROW in 2018.	Since multiple parcels in this vicinity are owned by Barron Collier Properties (and "Silver Strand" is not currently identified on the Collier County Property Appraiser database), the limits of Silver Strand Orange Grove were not evident. The location is described as "adjacent east" of SSR 29 in the 2018 CSER. According to the Silver Strand Sod website, Barron Collier Companies agricultural operations are run under the Silver Strand banner which is divided into divisions including Silver Strand Farms, Silver Strand Groves and Immokalee Ranch, totaling over a thousand acres. It appears at least a portion of this grove was acquired and redeveloped by FP&L as a solar farm and electrical substation (FA-21, risk rating Low). Provided the groves east of SR 29 in this vicinity was part of the Silver Strand Orange Grove, although the parcel is adjoining east, the groves are located 80 feet east of the ROW with an intervening ditch and unpaved road. Given the separation distance of 80 feet to the groves, 230 feet to the former "decon unit," and over 3,300 feet to former aldicarb drum location, this site retains a risk rating of Low.	Low
					New Contamination Sites		
67	Collier Health Services/ Marioni Fether Medical Center 1454 Madison Avenue	TANKS 9818091	Adjoining east	Petroleum	Not identified in the July 2018 Contamination Screening Evaluation and Pond Siting Report.	This site was identified as Site 67 in the Contamination Screening Evaluation Report, Addendum to Include Recommended Pond Sites and Mainline Changes dated February 16, 2024. It was assigned a risk rating of Low given the emergency generator diesel AST installed on November 6, 2020 with no reported discharges. Additionally, two "minor" violations (lack of overfill equipment test, and leak sensor test) were noted and corrected in May 2022 (CSER Appendix B). Although an AST is present, the site was given a Low risk rating due to the recent installation of the AST, lack of reported discharges, and distance of the site from the mainline.	Low

					Table 3 – Contamination Sites Risk Rat	tings	
Site ID	Site Name & Address	Databases/ Facility ID/ Or Other Source	Distance from Project Area	Contaminants of Concern	Risk Ratings from July 2018 Contamination Screening Evaluation and Pond Siting Report (* indicates High or Medium rated contamination site located within the proposed ROW)	Updates since 2018 CSER	Risk Rating
68	Atlantic Coast Line (ACL) Railroad (Haines City Branch) (Abandoned Railway Line)	Aerials	Within	Creosote (polycyclic aromatic hydrocarbons (PAHs) from railroad ties), heavy metals (lead, arsenic), leaked oil, and gasoline constituents	Not identified in the July 2018 Contamination Screening Evaluation and Pond Siting Report.	Former railway easements crossing the proposed project were noted on historical aerials and maps. The former easements are within the Gopher Ridge Road ROW and parallel to the west side of SR 29 ROW south of Seminole Crossing Trail. All signs of the railroad have been removed. However, lumber cross ties may be encountered as a result of improvement activities for the proposed project. Lumber cross ties are likely treated with creosote compounds. Following their removal, the treated lumber should be disposed of at a lined landfill permitted to receive this material. Because any known contaminants were most likely mitigated during the conversion of the railroad to the current uses, the site has been assigned a Low risk rating.	Low
69	Sunniland Pipeline	Previous reports	Within and/or near	Petroleum	*Although this site was discussed in the July 2018 Contamination Screening Evaluation and Pond Siting Report, it was not assigned a risk rating. Therefore, it is considered a new contamination site for this evaluation.	Although discussed in the 2018 CSER, the pipeline was not identified as a contamination site or assigned a risk rating. Therefore, for this report it is considered a new contamination site. A former petroleum pipeline easement (Sunniland Pipeline) was reported to parallel the SR 29 ROW in the Immokalee/Sunniland Area. Reportedly, the pipeline has been abandoned and presumed emptied of petroleum product. It was noted that the remaining "flow lines" were flushed by Exxon in 1998, despite a lack of documentation and the removal of the pipeline. As above ground markers have been removed or not visible (overgrown), the location of the pipeline could not be determined during the 2018 field reviews. If encountered, the contractor must assume that residual petroleum product remains within the pipeline and, if compromised, may result in a discharge. The pipeline appears to intersect portions of the northern and southern sections of the project area. Based on the proximity of the petroleum pipeline, potential for pipe degradation, potential for a history of discharges associated with pipelines in the area, and uncertainty of pipeline status, the Sunniland Pipeline has been assigned a Medium risk rating and further construction activities should be coordinated with the DCIC.	Medium
70	CDC #1 OG 379 Dryhole	Aerials	450 feet west	Petroleum, metals	Not identified in the July 2018 Contamination Screening Evaluation and Pond Siting Report.	This site was identified on the FDEP Map Direct (Oil and Gas) database as a prospective oil well located within the "Wildcat" oil field. The dry well was drilled to a measured depth of 11,810 feet bls in 1967 and was plugged (with a welded cover) in 1968. Although not identified as a producer oil well, there is a potential for petroleum-based drilling fluids to have been introduced and disposed at/near the reserve pit area, as well as lesser amounts of petroleum constituents mixed with salt water from the borehole itself. Petroleum-based and mineral oil-based drilling fluids and reserve pit waste contaminants (petroleum and metals including lead, arsenic, chromium, fluoride, lead and zinc) are typically associated with oil wells. Although sought, this well was not observed during the 2020 site reconnaissance.	Low
71	Cell Tower 2829 SR 29	Aerials	470 feet west	Petroleum	Not identified in the July 2018 Contamination Screening Evaluation and Pond Siting Report.	Aerial photographs first depict the cell tower in 2004. No regulatory files were found. Typically, cell towers include at least one generator powered by either diesel fuel or propane. Given the separation distance, this site is assigned a risk rating of No.	No

	Table 3 – Contamination Sites Risk Ratings									
Site ID	Site Name & Address	Databases/ Facility ID/ Or Other Source	Distance from Project Area	Contaminants of Concern	Risk Ratings from July 2018 Contamination Screening Evaluation and Pond Siting Report (* indicates High or Medium rated contamination site located within the proposed ROW)	Updates since 2018 CSER	Risk Rating			
72	Howard Fertilizer Spill	ERIC_15319	Within SR 29 ROW	Groundwater: arsenic, iron, and manganese. Soil: None. Surface Water: Iron. Sediment: None.	*Not identified in the July 2018 Contamination Screening Evaluation and Pond Siting Report.	 The FDEP Office of Emergency Response Incident Report (Incident No. 2019-3I-64280) states a Howard Fertilizer truck discharged 500-gallons of liquid fertilizer onto SR 29 (including grassy ROWs on both sides of the road) on October 3, 2019. Although no pooling was noted, the Fire Department reported 20-foot by 30-foot stains on each side of SR 29. Additionally, vehicles had driven through the spill prior to the arrival of the Fire Department which extended the liquid fertilizer to a "500-700" foot area of SR 29 (CSER Appendix B). Media affected included impervious surface (SR 29), soil, groundwater, and surface water (west ditch). The most recent site assessment report (Site Assessment Report dated September 14, 2022) states roadway construction activities performed recently (prior to March 2021) included the spill area, and the two temporary groundwater monitoring wells were apparently destroyed. The wells were reinstalled after the roadway construction activities were completed in 2022. Groundwater, surface water, and sediment samples were collected on July 20, 2022. Laboratory results exceeded GCTLs. Measured depth of shallow groundwater ranged from 3.90 to 4.52 feet bls. Groundwater flow was reportedly to the north-northeast. According to the report, the iron concentration of 698.0 ug/L in the surface water sample collected from the West Ditch exceeds the background concentration of 171 (I) ug/L. Sample locations are depicted on figures included in the report (CSER Appendix B). The following is a brief summary of FDEP's review (letter dated October 25, 2022) of the Site Assessment Report dated September 14, 2022: I.FDEP recommends determining another source for the groundwater contamination (arsenic, iron and manganese), or perform a background concentration study to determine if the contaminants are naturally occurring. Sediment sampling in the west ditch is no longer required since laboratory results were below the Threshold Effect Concentra	High			

					Table 3 – Contamination Sites Risk Rat	tings	
Site ID	Site Name & Address	Databases/ Facility ID/ Or Other Source	Distance from Project Area	Contaminants of Concern	Risk Ratings from July 2018 Contamination Screening Evaluation and Pond Siting Report (* indicates High or Medium rated contamination site located within the proposed ROW)	Updates since 2018 CSER	Risk Rating
73	Arsenic NW corner of SR 29/SR 82	Previous report	Adjacent northwest	Arsenic	Not identified in the July 2018 Contamination Screening Evaluation and Pond Siting Report.	The arsenic RDE SCTL exceedance of 8.6 mg/kg at SB-1 (coordinates 26.48585, 81.4348) was identified in the Final Level II Field Screening Report dated July 6, 2017 (FPID 417878-4-52-01), the adjoining north project. The current location is within the ROW which was redeveloped (and mitigated with blending/mixing of soils) in 2021/2022 as a roundabout at the intersection of SR 29/SR 82. Approximately 2,600 feet of SR 29 was widened (redeveloped) south of the roundabout at the time. The depth of the composite sample (SB-1) was from existing grade to two feet below existing grade. The concentration exceeds the RDE SCTL of 2.1 mg/kg but is below the CIDE SCTL of 12 mg/kg. Given this vicinity was redeveloped and potential arsenic impacts were mitigated, this site is assigned a risk rating of Low.	Low
74	Row Crops 3637 SR 29	Aerial photographs, Site reconnaissance	Adjacent west	Pesticides, Herbicides	Not identified in the July 2018 Contamination Screening Evaluation and Pond Siting Report.	This site was depicted on aerial photographs from 1993 to 2022. No mix/load areas, diesel powered irrigation pumps, petroleum tanks or hazardous materials were observed onsite during site reconnaissance or during the review of historical aerial photographs. Given the proximity, and separation by a ditch and woods, this assigned a risk rating of Low.	Low

		Table 4: Pond Site Risk Ratings
Pond ID	Risk Rating	Comments
Pond 501B	Medium	Pond 501B was not previously identified in the PD&E Contamination Screening Evaluation Report and Pond Siting Report dated July 2018, or the Alternatives), FPID 417540-6-52-01, dated October 22, 2020.
Pond 502A (PD&E Pond 31-C2	Medium	 Risk Rating: Given the location on the airport property and within the Immokalee Airport Area Brownfield, Pond 501B is assigned an initial risk ranking of A small portion of Pond 502A was previously identified as Pond 31-C2 and was assigned a risk rating of Medium in the PD&E Contamination Screening since it was located within a citrus grove. Given the footprint expansion, aerial photographs depict woods, and a ditch in the southwest corner, and grove FA-15 – This site contains a former staging area within an existing citrus grove. No issues were discovered during a March 2018 field review during prepared Medium due to the presence of the citrus grove where surface and subsurface soils may contain application levels of pesticides and herbicides. Site 56 – This site is rated medium due to an open out-of-compliance case according to a Compliance Assistance Offer (CAO) letter dated August 28, 2023 in operation, but holds an active NPDES Multi-Sector Generic Permit (MSGP) (FLR05H006). To close the permit, the facility will have to remove all potent in compliance. Risk Rating: Due to groves located within the pond boundaries, and compliance concerns with piles of tires and old auto parts, Pond 502A retains a risk raise.
Pond 503B (PD&E Pond 32-C1R/Pond 32-C2)	Low	A small portion of Pond 503B was previously identified as Pond 32-C1R / Pond 32-C2 in the PD&E Contamination Screening Evaluation Report and Pond rating of Low with no contamination concerns noted. Pond 503B was not evaluated in the Level I Contamination Screening Evaluation Report (Pond All Given the footprint expansion, aerial photographs depict a grassy field, a dirt trail, and woods in the northwestern area. No other changes were noted. Risk Rating: Due to an existing canal/buffer between the southeastern pond boundary and an existing citrus grove, Pond 503B retains a risk rating of Low
Pond 601A	No	Pond 601A was previously evaluated in the Level I Contamination Screening Evaluation Report (Pond Alternatives), FPID 417540-6-52-01, dated October of contamination concerns. For this evaluation, the footprint of Pond 601A was only slightly modified. No other changes were noted. Risk rating: Pond 601A retains a risk rating of No.
Pond 602B (PD&E Pond 35)	Medium	Pond 602B was previously identified as Pond 35 in the PD&E Contamination Screening Evaluation Report and Pond Siting Report dated July 2018. It was concerns noted. As a result of the Level I Contamination Screening Evaluation Report (Pond Alternatives), FPID 417540-6-52-01, dated October 22, 2020, to Site 69 - Sunniland Pipeline. For this evaluation, the footprint remained the same. No changes were noted. Risk rating: Given the proximity to Site 69 - Sunniland Pipeline, Pond 602B retains a risk rating of Medium.
Pond 603/604B	Medium	Pond 603/604B was not evaluated in the PD&E Contamination Screening Evaluation Report and Pond Siting Report dated July 2018. It was previously as Screening Evaluation Report (Pond Alternatives), FPID 417540-6-52-01, dated October 22, 2020 given the proximity to Site 69 - Sunniland Pipeline. For thi were noted. Risk rating: Given the proximity to Site 69 - Sunniland Pipeline, Pond 601B retains a risk rating of Medium.
Pond 605A (PD&E Pond 39)	Medium	This pond alternative was previously identified as Pond 39 in the PD&E Contamination Screening Evaluation Report and Pond Siting Report dated July 2022 historical use as groves. The risk rating of Medium was retained in the Level I Contamination Screening Evaluation Report (Pond Alternatives), FPID 41754 and the added rationale of the proximity to Site 69 - Sunniland Pipeline. For this evaluation, the footprint remained the same. No changes were noted. Risk rating: Given the use as groves, and the proximity to a buried petroleum pipeline, Pond 605A retains a risk rating of Medium.

e Level I Contamination Screening Evaluation Report (Pond

of Medium.

ng Evaluation Report and Pond Siting Report dated July 2018 oves in eastern area.

eparation of the 2018 CSER. The site's rating was increased to

23. An inspection on 6/12/2023 stated the facility is no longer ential pollutant sources (pile of tires and old auto parts) to be

rating of Medium.

nd Siting Report dated July 2018. It was assigned an initial risk Alternatives), FPID 417540-6-52-01, dated October 22, 2020.

ow.

er 22, 2020. It was assigned a risk rating of No due to the lack

as assigned an initial risk rating of Low with no contamination 10, the risk rating was changed to Medium given the proximity

assigned a risk rating of Medium in the Level I Contamination this evaluation, the footprint remained the same. No changes

2018. It was assigned an initial risk rating of Medium based on 540-6-52-01, dated October 22, 2020, given the use as groves,

		Table 4: Pond Site Risk Ratings
Pond ID	Risk Rating	Comments
Pond 606A	Medium	 Pond 606A was previously assigned a risk rating of No in the Level I Contamination Screening Evaluation Report (Pond Alternatives), FPID 417540-6-52-0 concerns. For this evaluation, the footprint remained the same. Updated information since the 2020 evaluation includes: Site FA-21 - Florida Power & Light (Former Barron Collier Partnership, Parcel 000650000003, 3350 SR 29) solar farm is located 200 feet east of Pond 606A. G concern to Pond 606A. Site 72 - Howard Fertilizer Spill: A groundwater contamination plume (arsenic, iron, and manganese) located on both sides of the SR 29 ROW has not beer surface water criteria in the west ditch. The spill is located 220 feet northeast of Pond 606A, within the SR 29 ROW, and reportedly affected a "500-700" i spill occurred. Although assessment is not complete, groundwater remediation efforts (collection of 5,000-gallons of groundwater from each of the two email dated January 3, 2024 states the FDEP granted a time extension for completion of this task/report until March 18, 2024. Risk rating: Given the open discharge associated with Site 72 is located within 500 feet and may affect NPDES permitting if dewatering is required, and risk rating for Pond 606A is changed from No to Medium.
Pond 607A	Medium	 Pond 607A was previously evaluated in the Level I Contamination Screening Evaluation Report (Pond Alternatives), FPID 417540-6-52-01, dated Octobe within Pond 607A, since concentrated contamination concerns (maintenance/storage buildings, mix/load areas, tanks, etc.) were not identified, it was assigned the same. Updated information since the 2020 evaluation includes: Site 74 – Row Crops were depicted within the limits of Pond 607A and adjoining west on aerial photographs from 1993 to 2022. No mix/load areas, diese materials were observed onsite during site reconnaissance or during the review of historical aerial photographs. Site FA-21 - Florida Power & Light (Former Barron Collier Partnership, Parcel 000650000003, 3350 SR 29) solar farm is located 200 feet east of Pond 607A. G concern to Pond 607A. Risk rating: Given the use as row crops (Site 74), Pond 607A is changed from Low to Medium.

-01, dated October 22, 2020 given the lack of contamination

Given the separation distance, this site is not a contamination

een delineated horizontally or vertically; and iron exceeds the " foot area since vehicles continued driving through after the o recovery wells in the source area) are in progress. An FDEP

d un-delineated groundwater and surface water plumes, the

ber 22, 2020. Although row crops/plowed field were located assigned a risk rating of Low. For this evaluation, the footprint

sel powered irrigation pumps, petroleum tanks or hazardous

Given the separation distance, this site is not a contamination

5.0 Conclusions and Recommendations

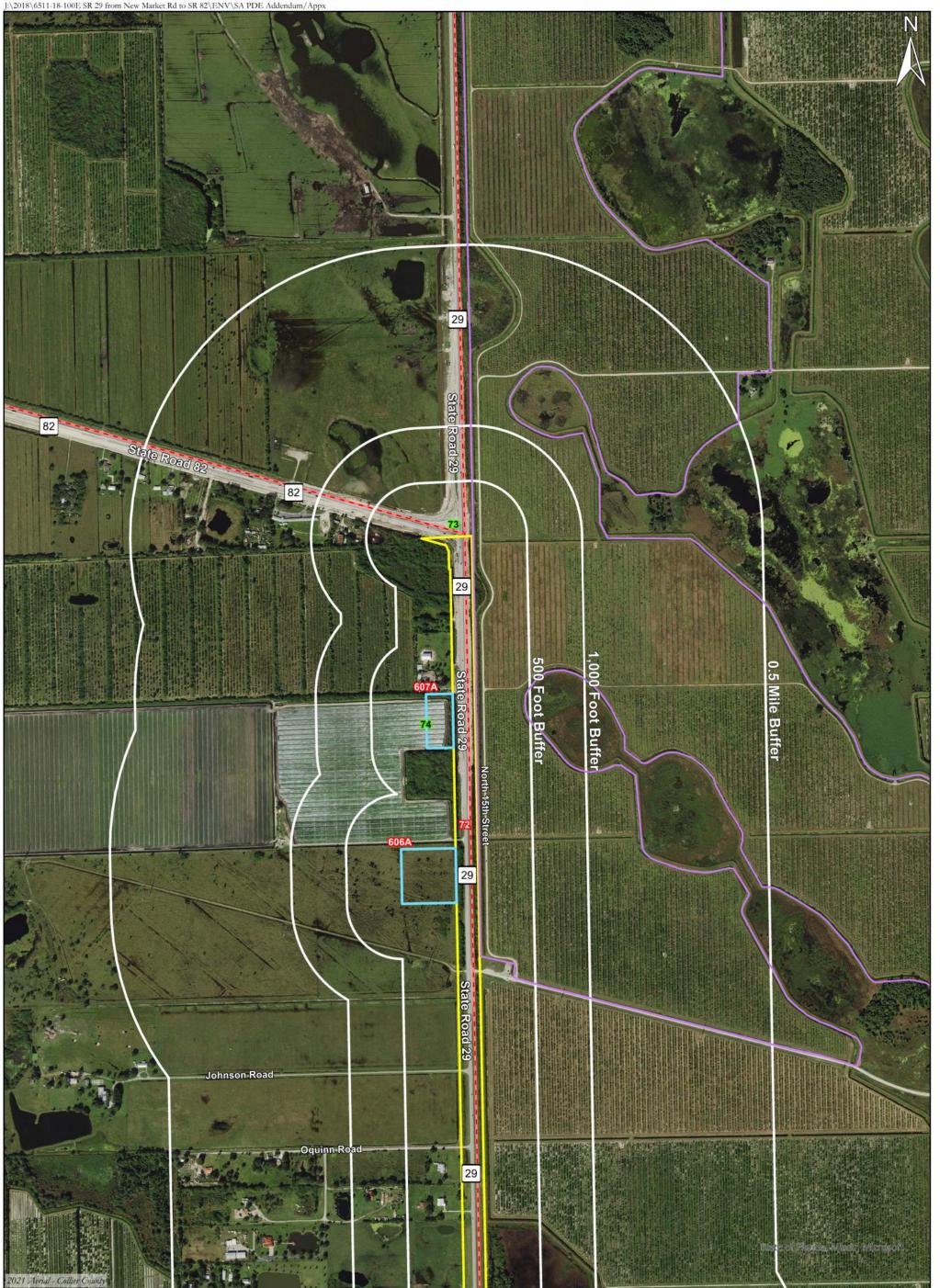
A total of 50 mainline contamination sites were assessed as part of this CSER Addendum. A summary of the risk ratings assigned is provided in **Table 5**.

Table 5 – Contamination Site Risk Rating Summary						
High	Medium	Low	No			
4	18	23	5			

A total of 9 pond sites were evaluated as part of this CSER Addendum. A summary of the risk ratings assigned is provided in **Table 6**.

Table 6 – Pond Site Risk Rating Summary							
High	Medium	Low	No				
0	7	1	1				

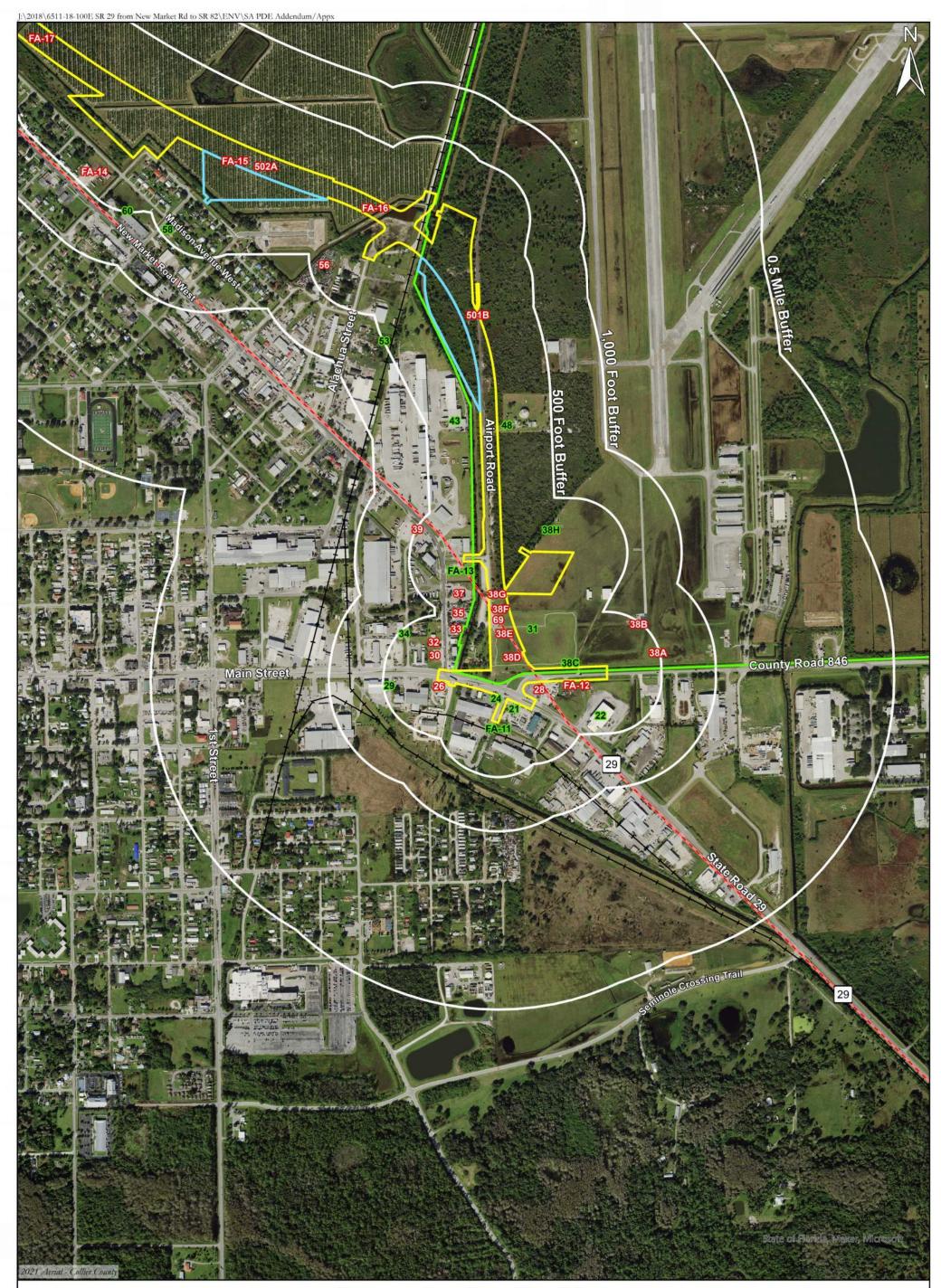
Based on the conclusions of the study and the risk ratings noted above, the following recommendations are made for this project:


- Additional information may become available or site-specific conditions may change from the time this report was prepared and should be considered prior to acquiring ROW and/or proceeding with roadway construction.
- No further evaluation is recommended for the contamination sites or pond sites assigned risk ratings of No or Low as none are expected to have contamination involvement.
- A total of 29 locations were assigned High or Medium risk ratings (4-High rated and 18-Medium rated contamination sites; 7 Medium rated pond sites). These locations were identified within the study area and should be considered for Level II testing. Level II testing is performed to assess the presence/absence of contamination, identify impacts to construction, and to develop site-specific recommendations. Level II activities are performed by FDOT's CAR contractor and should be completed prior to construction. For projects with new (proposed) ROW, Level II activities should be completed prior to ROW acquisition. Typically, they are performed during the design phase and can include soil borings, monitoring well installation, soil and groundwater sampling, laboratory testing, OVA screening, boundary surveys, additional file research, and GPR surveys. Further evaluation and Level II testing, at the discretion of the DCIC, is recommended for the following:
 - Petroleum: Sites FA-12, 22, 26, 28, 30, 38A, 38C, 38E, 38F, 38G, 39, 69, Ponds 602B, 603/604B, and 605A were risk rated Medium for petroleum concerns. Level II activities may include OVA screening, and the collection of soil samples for laboratory analysis. Laboratory analysis of soil samples may include one or more of the following: Total Recoverable Petroleum Hydrocarbons (TRPH) by the FLPRO Method, Polycyclic Aromatic Hydrocarbons (PAHs) by EPA Method 8270, and volatile organics by EPA Method 8260. Additionally, Sites 28 and 39 should also include testing for lead by EPA Method 6010; and Sites 22, 38A, 38D, 38E, 38F, and 38G should include

Resource Conservation and Recovery Act (RCRA) 4 metals (arsenic, cadmium, chromium, and lead), and PCBs using EPA Method 8082 for waste oil and solvents. Detections in the soil above the regulatory standard may require additional soil and/or groundwater samples for delineation purposes. Site 69, and Ponds 602B, 603/604B, and 605A were risk rated Medium based on proximity to Site 69 – Sunniland Pipeline. The precise location of the buried petroleum pipeline was not reasonably ascertainable. The pipeline should be presumed to contain petroleum products and caution should be exercised during construction activities. GPR and assessment tasks are warranted prior to construction to identify the precise location of the pipeline and any soil/groundwater impacts.

- Herbicides/Pesticides: for Sites FA-15, FA-16, FA-17, FA-18, FA-19, 22, Ponds 502A, 605A, and 607A, soil analytical testing may include arsenic by EPA Method 6010, Organochlorine Pesticides by EPA Method 8081, Organophosphorus Pesticides by EPA Method 8141, Chlorinated Herbicides by EPA Method 8151, EDB by EPA Method 504.1, and PCBs by EPA Method 8082. Detections in the soil above the regulatory standard may require additional soil samples for delineation purposes and groundwater samples.
- Pesticides/Metals: for Site 22 Winfield Solutions, soil analytical testing may include Organochlorine Pesticides by EPA Method 8081, Organophosphorus Pesticides by EPA Method 8141, RCRA 8 (arsenic, barium, cadmium, chromium, lead, selenium, silver and mercury), EDB by EPA Method 504.1, and metals by EPA Method 6010 and EPA Method 7471.
- Fertilizer: Site 72 Howard Fertilizer Spill, groundwater testing should include arsenic, iron, and manganese by EPA Method 6010 and surface water in the west ditch for iron by EPA Method 6010.
- Solvents and Waste Oil: for Sites FA-14, 32 and 33, Level II activities may include OVA screening, and the collection of soil samples for laboratory analysis including TRPH by FL-PRO Method, PAHs by EPA Method 8270, and volatile organics by EPA Method 8260, RCRA 4 metals (arsenic, cadmium, chromium, and lead), and PCBs using EPA Method 8082.
- Level II testing costs are estimated at \$2,000 to \$10,000 per site. If impacts are identified during Level II testing, Level III support activities such as source removal and/or dewatering may be required during construction and are estimated at \$50,000 to \$100,000 per site.
- Once final design plans are available, additional review is recommended in consideration of dewatering operations that may be necessary under the NPDES Generic Permit for Stormwater Discharges from Large and Small Construction Activities. Verification testing may be warranted for contamination issues within 500 feet of the dewatering area.

CSER APPENDIX A


Contamination Site Map

Contamination Site Map Maps limited to concurrent design segments discussed in Contamination Screening Evaluation Report Addendum

Contamination Site Map Maps limited to concurrent design segments discussed in Contamination Screening Evaluation Report Addendum

Sheet No.	800 400 0 800	Legend
		MAP ID No/Low Rated Sites Site 62 - Estimated Route of Sunniland Pipeline (Risk Rating: Medium)
3	1 Inch = 800 Feet	MAPID Medium/High Rated Sites Site 68 - Approximate Route of ACL
5	Collier County, Florida FPID No.: 417540-1-22-01	Project Area Railroad (Risk Rating: Low)
	Project No.: 6511-18-100E	Pond Alternatives Site 38 - Brownfield Area (Risk Rating: No

CSER APPENDIX B

Supplemental Information

Site FA-13 – Immokalee Fire Control District

FLORIDA DEPARTMENT OF Environmental Protection

Bob Martinez Center 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Ron DeSantis Governor

Jeanette Nuñez Lt. Governor

Shawn Hamilton Secretary

Electronic Submission Receipt Termination of Generic Permit for Stormwater Discharge from Large and Small Construction Activities and Dewatering Operations General Permit - Confirmation

The Florida Department of Environmental Protection has received and processed your *National Pollutant Discharge Elimination System Stormwater Notice of Termination*. This letter acknowledges that your coverage under the Generic Permit for Stormwater Discharge from Large and Small Construction Activities and Dewatering Operations *Generic Permit for Stormwater Discharge Associated with Generic Permit for Stormwater Discharge from Large and Small Construction Activities and Dewatering from Large and Small Construction Activities and Dewatering Operations (CGD) has been terminated.*

Facility IDFacility NameFacilityFLR20ET74Immokalee Fire Station 30510 Net

Facility Address 510 New Market Rd E Immokalee, FL 34142 3439 Permit Type CGD

Please be advised of the following:

- This letter does not release you from liability for any previous violations of the conditions of the CGD.
- If industrial activity continues to occur at the above-referenced facility after the date of this letter, stormwater discharges are unlawful unless covered by either (1) a new permit for stormwater discharge associated with industrial activity (individual or generic) or (2) a conditional no exposure exclusion from NPDES Stormwater permitting.

Please retain a copy of this confirmation for your records.

If you have any questions concerning this acknowledgment letter, please contact the NPDES Stormwater Notices Center at (866) 336-6312.

FLORIDA DEPARTMENT OF Environmental Protection

Ron DeSantis Governor

Jeanette Nuñez Lt. Governor

Shawn Hamilton Secretary

Bob Martinez Center 2600 Blair Stone Road Tallahassee, Florida 32399-2400

Receipt for Submission

For: Michael Valin

Facility ID: FLR20ET74
Facility Address: 510 New Market Rd E Immokalee, FL 34142 3439
Notice of Termination for Generic Permit for Stormwater Discharge Construction Activities and Dewatering Operations from non-contaminated sites
COUNTY: Collier

The department acknowledges receipt of your Notice of Termination (NOT) for the above referenced Generic Permit and coverage has been terminated. Please note that for sites discharging to an MS4, the Operator must send a copy of the NOT or this acknowledgement of termination within 7 calendar days of receipt to the operator of the MS4. If you have any questions, please contact the NPDES Stormwater Notices Center at (866) 336-6312 or NPDES-stormwater@dep.state.fl.us.

Attachment: Notice of Termination for Generic Permit for Stormwater Discharge Construction Activities and Dewatering Operations from non-contaminated sites

From:	tankregistration
To:	accounting@immfire.com; mchoate@immfire.com
Cc:	tankregistration; jbauer@immfire.com; FTM Tanks Cleanup
Subject:	FAC ID# 9819637 New Fuel Tanks Immokalee Fire Control District
Date:	Wednesday, July 19, 2023 11:03:40 AM
Attachments:	SKM_C250i23071213270.pdf
	image002.png
	image003.png
	image004.png

Hello Michael,

Per your request the new Facility ID # 9819637 has been assigned to Immokalee Fire Control Dist – Fire Station #30 at 510 New Market Road E, Immoakalee, FL 34142.

Also, Joshua per our telephone conversation please note tank #2 in process of being removed due to regulations request tanks 550 more to be registered once updated contact you advising same.

Rulemaking Authority 376.303 FS. Law Implemented 376.303 FS. History-New 6-21-04, Amended 1-11-17, 10-17-19.

62-762.301 Applicability.

(1) General Requirements.

(a) The requirements of this chapter, unless specified otherwise, apply to owners and operators of facilities, and owners and operators of storage tank systems with individual storage tank capacities greater than 550 gallons, that contain or contained regulated substances. Storage tank systems or system components installed after January 11, 2017, shall comply with this chapter upon installation. Unless otherwise specified in this chapter, storage tank systems or systems or system components installed before January 11, 2017, are subject to the applicable Reference Standards listed in the Department's storage tank rules that were in effect at the time the storage tank systems or system components were installed.

Thank you

Es allita ID	9819637 Facility Status OPEN			
Facility ID County	9819637 Facility Status OPEN 11 COLLIER District SD	-	Create Date	07/14/2023
Name *	IMMOKALEE FIRE CONTROL DIST -FIRE STATION #	30	Name Update Addr Update	
Address *	510 NEW MARKET ROAD E		Comments?(Y/N)	N
Address2			Account Status	/OICE 14-JUL-2023
City	IMMOAKALEE FL 34	142	ASTC	1 USTC 0
Facility Contact	Name DEREK NEUMAN Facility C	ontact Phone	239-657-2111 Ext	Phone #
		e Verified By 🛛	HUDSON C	Changes Verified?
Current Placar		ontact Phone La	ast Verified 07/14/2023	
	rgency Contact Name - Phone DEREK NEUMAN	-	239-986-6306 Ext	
24 HR Eme	rgency Contact Name - Phone DEREK NEUMAN]-[
			239-986-6306 Ext	t Owned *
24 HR Eme Facility Type *	rgency Contact Name - Phone DEREK NEUMAN G STATE GOVERNMENT	Coverage Perio	DEP Contrac	t Owned * P
24 HR Eme Facility Type * Financial Resp	rgency Contact Name - Phone DEREK NEUMAN G STATE GOVERNMENT	-	DEP Contrac	t Owned * P
24 HR Eme Facility Type * Financial Resp Insurance Comp	rgency Contact Name - Phone DEREK NEUMAN G STATE GOVERNMENT	-	DEP Contrac	
24 HR Eme Facility Type * Financial Resp Insurance Comp Cleanup Status	rgency Contact Name - Phone DEREK NEUMAN G STATE GOVERNMENT	-	DEP Contrac	
24 HR Eme Facility Type * Financial Resp Insurance Comp Cleanup Status Owner Name	G STATE GOVERNMENT	-	DEP Contrac od Effective	
24 HR Eme Facility Type * Financial Resp Insurance Comp Cleanup Status Owner Name Address	G STATE GOVERNMENT	Coverage Perio	DEP Contrac od Effective Primary Role Owner ID# Begin Date	ACCT OWN 82143 07/14/2023
24 HR Eme Facility Type * Financial Resp Insurance Comp Cleanup Status Owner Name Address Address2	G STATE GOVERNMENT G STATE GOVERNMENT IMMOKALEE FIRE CONTROL DISTRICT 5368 USEPPA DR ATTN: STORAGE TANK REGIS	Coverage Perio	DEP Contrac od Effective Primary Role Owner ID#	ACCT OWN 82143 07/14/2023

ᡖ Storage Tank/Contamination Tracking - F	Roles (Ministration)			0000000000000000 2
Name	Role *	Own. ID	Begin *	End
IMMOKALEE FIRE CONTROL DISTRICT	ACCOUNT OWNER	82143	07/14/2023	
IMMOKALEE FIRE CONTROL DISTRICT	PROPERTY OWNER	82143	07/14/2023	

ᡖ Storage Ta	ank/Contami	nation Trac	king - Sto	orage Tank	Registrati	on Refer				***********		:≚×
Facility ID	981	9637				Construct	tion *	Piping	* Mor	nitoring *		
Name	IMMOKALEE	FIRE CONTR	OL DIST	-FIRE ST.								
						<mark>⊂</mark> ≞				A		
IMMOKALE	E FIRE CONTR	ROL DISTRIC	T (ID #82	143)		_ <u> </u>		В	6			
FIRE CHIEF	MICHAEL CH	OATE				M		J	F			
5368 USEPP	ADR					0						
ATTN: STO	RAGE TANK R	EGIS						- -		_		
	•	FL 341	42	_						<u> </u>		
Ľ												
Eng accord	ment begin (data is *		07/2023	-							
1 66 033633	ment begin	uale 15		0112023			Content	;	Status	Last	Repl	
Added	Tnk ID *	T/V/D *	A/U *	Gallons	Install		& Date		& Date	Updated on	Tank	
07/2023	1	TANK	AE	3000	06/2023	D	06/2023	U	06/2023	07/14/2023		≜
07/2023	2	TANK	AE	500	06/2023	В	06/2023	<u> </u>	06/2023	07/14/2023		
]								
					I				I			
		NOT	E: ** Inst		Y takes nri	ority: if bla	nk fee ass	essmi	ent begins to	dav		
		Non	L. 11150	un mainter i	r tanco pri	ong, ir old	111,100 000	000111	in bogino to	uu,	TAN	WK2

Cynthia Hudson Division of Waste Registration <u>Cynthia.Hudson@Floridadep.gov</u> Office: 850.245.8981

From: Joshua Bauer <jbauer@immfire.com>
Sent: Wednesday, July 12, 2023 2:16 PM
To: tankregistration <tankregistration@dep.state.fl.us>
Subject: New Fuel Tanks Immokalee Fire Control District

EXTERNAL MESSAGE

This email originated outside of DEP. Please use caution when opening attachments, clicking links, or responding to this email. Please see the attached form for our new fuel tanks at the Immokalee Fire Station 30 at 510 New Market Road in Immokalee Fl 34142

Thank you, Joshua D. Bauer, CDM Battalion Chief of Administration Office: 239-657-2111, Ext 341 Cell: 239-675-1601

Information contained in this email is subject to public records release pursuant to Florida Statute 119. This message, together with any attachments, is intended only for the addressee. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, use or any action or reliance upon this communication is strictly prohibited. If you have received this e-mail in error, please notify the sender immediately by return e-mail, and delete the message and any attachments.

Florida Department of Environmental Protection Twin Towers Office Bldg. 2600 Blair Stone Road, Tallahassee, Florida, 32399-2400 Division of Waste Management Petroleum Storage Systems Storage Tank Facility Installation Site Inspection Report

Facility Information:

Facility ID:	9819637	County: COLLIER	Inspection Date:08/21/2023
Facility Type:	G - State Government		
Facility Name:	IMMOKALEE FIRE CONTRO	L DIST -FIRE STATION #30	# of inspected ASTs: 1
	510 NEW MARKET ROAD E		USTs: 0
	IMMOAKALEE, FL 34142		Mineral Acid Tanks: 0
Latitude:	26° 25' 15.8794"		
Longitude:	81° 24' 37.987"		
LL Method:	DPHO		

Inspection Result:

Result: In Compliance

Signatures:

TKCOPC - COLLIER COUNTY SOLID & HAZ WASTE MGMT DEPT (239) 207-0920

Storage Tank Program Office and Phone Number

Michael G Winkler

Inspector Name

like Minkler

Inspector Signature Principal Inspector

COLLIER COUNTY SOLID & HAZ WASTE MGMT DEPT

No Signature

Representative Signature

Representative Name

Immokalee Fire

Owners of UST facilities are reminded that the Federal Energy Policy Act of 2005 and 40 CFR 280 Subpart J requires Operator Training at all facilities by October 13, 2018. For further information please visit: https://floridadep.gov/waste/permitting-compliance-assistance/content/underground-storage-tank-operator-training

Financial Responsibility:

Financial Responsibility: INSURANCE

Insurance Carrier: ACE AMERICAN INSURANCE COMPANY

Effective Date: 10/12/2022

Expiration Date: 10/12/2023

James Eidel

Completed System Tests

Туре	Date Completed	Results	Reviewed	Next Due Date	e Comment
Annual Operability - Overfill Protection	06/21/2023	Passed	08/23/2023	06/21/2024	Overfill alarm tested annually
Annual Operability - Release Detection	06/21/2023	Passed	08/23/2023	06/21/2024	Interstice gauge tested annually.
Integrity Test - Dispenser Sump	06/21/2023	Passed	08/23/2023	06/21/2023	Dispenser pan tested at startup.
Integrity Test - Single-walled Spill Bucket	06/21/2023	Passed	08/23/2023	06/21/2023	Tested at startup
Tank Tightness Test	06/21/2023	Passed	08/23/2023	06/21/2023	Tank tightness at startup.

Inspection Comments

08/23/2023

Two UL 2085 tanks are installed here. DW Modern Welding Fireguard. 3K gallon and (unregulated) 500 gallon DW.

Both tanks have a spill bucket or fill cabinet, and are tight filled with overfill prevention valves and audible overfill (OPW) alarms. Tanks have "jar" style Morrison Bros. sight glass interstice indicators. Both tanks have solenoid valves to steel AG piping to a single split dispenser with diesel and regular unleaded. The tanks have 704 stickers and are identified as to contents at the fill areas.

PSR performed both the tank and BOI/ interstice integrity testing, hydrostatic testing of dispenser pan and fill areas, interstice indicators, and audible alarms. Test data is attached.

Inches to gallon charts are in the facility Tanks book. The inches to gallons chart and the monthly release detection requirements were reviewed with James Eidel at the time of the inspection.

Attachment Documents

- 2023-08-23 submittal, Fireguard 2085 AST
- 2023-08-23 testing

Inspection Photos

Added Date 08/23/2023

2023-08-21 ASTs overview

Added Date 08/23/2023

2023-08-21 unregulated 500 gal AST. OPV

Added Date 08/23/2023

2023-08-21 gas SB with quick connect

Added Date 08/23/2023

2023-08-21 DSL fill cabinet, overfill alarm

Added Date 08/23/2023 2023-08-21 tank placard

Added Date 08/23/2023 2023-08-21 DSL AST 3K gals

Added Date 08/23/2023 2023-08-21 interstice gauge

Added Date 08/23/2023 2023-08-21 topside components

Added Date 08/23/2023

2023-08-21 DSL fill cabinet

Added Date 08/23/2023

2023-08-21 single dispenser behind bollards

Added Date 08/23/2023 2023-08-21 E stop, fire extinguisher

Added Date 08/23/2023 2023-08-23 AST grounded

Site 26 – Combs Oil Co Immokalee Bulk Facility

(also known as Balgas, Combs Oil Co Immokalee Truck Stop, and N & R Gas Station)

Florida Department of Environmental Protection Twin Towers Office Bldg. 2600 Blair Stone Road, Tallahassee, Florida, 32399-2400 Division of Waste Management Petroleum Storage Systems

Storage Tank Facility Routine Compliance Site Inspection Report

Facility Information:

Facility ID:	8839176	County: COLLIER
Facility Type:	D - Bulk Storage Facility	
Facility Name:	COMBS OIL CO IMMOKALEE	E BULK FACILITY
	525 E MAIN ST	
	IMMOKALEE, FL 34142	
Latitude:	26° 25' 5.0"	
Longitude:	81° 24' 40.0"	
LL Method:	DPHO	

Inspection Date:10/11/2023

of inspected ASTs: 0 USTs: 4 Mineral Acid Tanks: 0

Inspection Result:

Result:	Major Out of Compliance
---------	-------------------------

Signatures:

TKCOPC - COLLIER COUNTY SOLID & HAZ WASTE MGMT DEPT (239) 207-0920

Storage Tank Program Office and Phone Number

Jay Standiford

Doug Ballard

Inspector Name

Inspector Signature Principal Inspector

COLLIER COUNTY SOLID & HAZ WASTE MGMT DIV Con

Representative Name

Representative Signature Delivery Driver

Combs Oil

Owners of UST facilities are reminded that the Federal Energy Policy Act of 2005 and 40 CFR 280 Subpart J requires Operator Training at all facilities by October 13, 2018. For further information please visit: https://floridadep.gov/waste/permitting-compliance-assistance/content/underground-storage-tank-operator-training

Financial Responsibility: Overdue

Financial Responsibility: INSURANCE

Insurance Carrier: MT. HAWLEY INSURANCE CO

Effective Date: 09/12/2021

Expiration Date: 09/12/2022

Findings:

No Training Certificates are Available.

Completed System Tests

Туре	Date Completed	Results	Reviewed	Next Due Date	e Comment
Annual Operability - Line Leak Detector	06/02/2020	Passed	10/26/2021	06/02/2021	The Diesel LLD tested pass. Other LLDs are missing.
Annual Operability - Release Detection	06/02/2020	Passed	10/26/2021	06/02/2021	The Veeder Root must be tested annually.
Annual Operability - Release Detection	06/02/2020	Passed	10/26/2021	06/02/2021	Interstice vacuum gauges are to be tested annually.
Integrity Test - STP Sump	05/14/2019	Passed	10/26/2021	05/14/2022	STP sumps are tested every 3 years.

Violations:

Type: Significance: Rule: Violation Text: Explanation: Corrective Action:	Violation SNC-A 62-761.420(2) No financial responsibility instrument or expired instrument for > 180 days. No financial responsibility maintained. Please obtain financial responsibility (storage tank pollution liability insurance or other mechanism) and associated FDEP CFR Forms and email all associated documents to the Inspector within 90 days of the inspection date.
Type: Significance:	Violation Minor
Rule:	62-761.800(1)(c), 62-761.800(1)(d)4
Violation Text:	Out of service storage tank systems not tested annually for operability or interstice and liquid level not monitored annually.
Explanation:	Facility owners and operators of out-of-service storage tank systems shall monitor the interstice and the liquid level in the storage tank annually but not to exceed 12 months, unless the tank system contains no regulated substances. Records of these inspections shall be maintained for three (3) years thereafter. In the event that liquid in excess of one inch, or 0.3 percent by weight, in the storage tank other than condensate in the interstice is discovered, facility owners and operators must follow the procedures for incidents pursuant to Rule 62-761.430, F.A.C.
	The following was observed/noted: -1R1 12K DSL UST primary compartment has 2 inches liquid. -4R1 5K PUL UST primary compartment has 4 inches liquid. -Annual visual inspections not performed. -Annual release detection not performed and all four (4) UST vacuum gauges were not visually inspected (during TCI) to verify operation as they were down in the sumps (confined space).
Corrective Action:	Within 90 days of the inspection date: -Perform the first annual visual/release detection inspection of the OOS UST system (visual inspection of STP sumps, sensor, and stick each primary compartment sumps then record liquid level) and then verify UST's are under vacuum. This must then be performed annually thereafter for the entire time the facility is registered as OOS. -Submit an INF for both UST's that have >1 inch liquid in them. -Remove excess liquid in DSL & PUL UST's to less than 1 inch and provide associated record documenting liquid was removed and properly disposed of if determined to be PCW. -Verify all UST's are under vacuum as they are required to be per FDEP EQ. If they are not

under vacuum, then an INF must be completed and an investigation performed. The same INF can be completed for both liquid in the UST's and the UST's not holding vacuum (only if vacuum is not maintained) for interstitial monitoring.

Please submit all associated documentation to the Inspector via email within 90 days of the inspection date.

Attachments:

Added Date 10/18/2023

2023-10-11 TCI 2 Inches Liquid in DSL Primary

Added Date 10/18/2023

2023-10-11 TCI 4 Inches Liquid in PUL Primary

Existing Violations:

Type: Significance:	Violation SNC-B
Rule:	62-761.500(7)(b), 62-761.500(7)(b)1., 62-761.500(7)(b)2., 62-761.500(7)(b)3.
Violation Text:	Overfill protection not provided as required. This violation may lead to Placard Revocation and Delivery Prohibition.
Explanation:	There is a high level alarm that is tested annually. However, if the only alarm is at the Veeder Root panel inside the building it may not be heard by the delivery driver. The designated overfill device must be tested for proper operation annually. As an alternative, overfill valves may be tested annually; however, they may be difficult to test with the remote fill piping.
Corrective Action:	Install a high level alarm that alerts the transfer operator when the tank is no more than 90 percent full. The alarm should be located so that is can be heard by the delivery person filling the tank(s). Or provide test records of another device (overfill valves, etc). Send documentation to the County.
	_

Violation Comments:

10/21/2021

Any overfill alarm occurs in the building, not allowing a delivery driver to hear an overfill condition in two of the tanks, The other two tanks (super unleaded and diesel) don't have working probes at all and no overfill alarm is even possible.

This violation was first identified in August of 2019 and the facility is referred to FDEP for Enforcement.

10/18/2023

The super unleaded and DSL UST's still don't have working probes at all and no overfill alarm is even possible. No corrective actions have been performed since 10/21/2021.

Туре:	Violation
Significance:	SNC-B

Facility ID: 8839176

Rule:	62-761.700(1), 62-761.700(1)(a), 62-761.700(1)(a)1, 62-761.700(1)(a)2
Violation Text:	Not repaired or isolated component or piping which has not caused a discharge or release.
Explanation:	Repair or replace diesel and premium probes. They are not functioning.
Corrective Action:	Repair or replace diesel and premium probes at this time.

Violation Comments:

10/18/2023

No record provided or work not performed to replace/repair DSL and PUL probes.

lation
nor
761.405(3)
ident Notification Form (INF) not received in a timely manner.
e diesel interstice vacuum appears to read zero psi.
omit an Incident Notification Form to Michael.Winkler@CollierCountyFL.gov and estigate, repairing or replacing the gauge as necessary.
i

Violation Comments:

10/18/2023

The facility has not submitted the associated INF.

Туре:	Violation
Significance:	Minor
Rule:	62-762.601(7), 62-762.602(7)
Violation Text:	Annual operability testing of release detection systems not completed.
Explanation:	Existing release detection systems require an annual test. The interstice vacuum gauges, Veeder Root, and line leak detector(s) must be tested annually.
Corrective Action:	All release detection devices shall be tested annually at intervals not exceeding 12 months to ensure proper operation. The test must either simulate an actual alarm condition or shall be conducted according to manufacturer's specifications, and shall include, at a minimum, a determination of whether the device operates as designed.
Violation Comm	

Violation Comments:

10/18/2023

Annual operability testing records were not provided/available as the system was registered as OOS.

Site Visit Comments

10/11/2023 A TCI was performed on 10/11/2023.

Inspection report emailed to Dennis Combs.

Inspection Comments

10/18/2023 SW steel spill containment visually inspected. All STP and sensor/monitoring sumps visually inspected. All steel piping and STP's visually inspected. All piping entry boots inspected. DWUP secondary not open in STP sumps (shrader valves not open or test boots not pulled back). All primary compartments stuck.

1R1 12 K DSL DW UST:

STP sump dry and Monitoring sump dry. 2 inches liquid in primary compartment UST Vacuum gauge reading not verified 2R1 12K E10 DW UST: STP sump dry and Monitoring sump dry. No liquid in primary compartment. UST Vacuum gauge reading not verified

3R1 10K DSL DW UST:<1 inch liquid in STP sump and Monitoring sump dry.Primary compartment dry, no liquid present.UST Vacuum gauge reading not verified

4R1 5K PUL DW UST:
< 1 inch liquid in STP sump, Monitoring sump dry.
4 inches liquid in primary compartment.
UST Vacuum gauge reading not verified.
Release detection:
UST's are lined with Petrofuse Tank Lining System (EQ-668). Interstitial release detection is by continuous vacuum.
If vacuum is not held, then this is considered an Incident.

SPILL CONTAINMENT: SW Steel with four (4) fill ports

PIPING:

DWUF

Exposed fiberglass piping. Please ensure this is continually painted with Gel Coat to prevent fiberglass UV degradation. Please also note that exposed fiberglass piping is flammable.

Bulk Fuel Dock was not inspected.

VRTLS is present but not recording data.

Acronyms: ALLD- Annual Line Leak Detection AO- Annual Operability AOC- Area of Concern AST- Aboveground Storage Tank ATG- Automatic Tank Gauge **API- American Petroleum Institute** ASWP- Aboveground Single Walled Piping **AV- Ambient Vent BOI- Breach of Integrity** CAO- Compliance Assistance Offer COI- Certificate of Insurance CFR- Certificate of Financial Responsibility **CP-** Cathodic Protection DSLH-Diesel Hose (Dispenses only diesel) **DF-Dike Field** DSL- Diesel **DSLH-** Diesel Hose **DW- Double Walled DWF-** Double Walled Fiberglass **DWSB-** Double Walled Spill Bucket DWUF- Double Walled Underground Fiberglass DWUP- Double Walled Underground Piping **DPVR- Dual Point Vapor Recovery DS-** Dispenser Sump **ELLD- Electronic Line Leak Detection**

Activity Opened : 10/11/2023

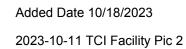
EF- Ethanol Free **ERD- Electronic Release Detection EV- Emergency Vent** F.A.C.- Florida Administrative Code FDEP- Florida Department of Environmental Protection FIRST- Florida Inspection Reporting for Storage Tanks FKA- Formerly Known As FG- Fiberglass FP- Fill Port FR- Financial Responsibility **FRP-**Fiberglass Reinforced Plastic **GPH-** Gallons Per Hour **IIR-** Incident Investigation Report IS- In Service K- Thousand (Gallons) LEL- Lower Explosive Level LLD- Line Leak Detection MGAP- Marine Grade Aboveground Piping MLLD- Mechanical Line Leak Detection MUL- Mid Grade Unleaded **MVI- Monthly Visual Inspections** MWP- Man Way Port NFPA- National Fire Prevention Act NO- New Oil OOS- Out Of Service **OPD- Overfill Prevention Device OPV- Overfill Prevention Valve** PAV- Primary Ambient Vent PCW- Petroleum Contact Water **PEV- Primary Emergency Vent PRVC- Pressure Vacuum Cap** PUL- Premium Unleaded PVC- Poly Vinyl Chloride **RD-** Release Detection **RDRL-** Release Detection Response Level **REC 90- Recreation 90 Octane** REC 90H- Recreation 90 Hose **RUL- Regular Unleaded RULH- Regular Unleaded Hose** SB- Spill Bucket SEV- Secondary Emergency Venting SHWMD- Solid and Hazardous Waste Management Division STFR- Storage Tank Financial Responsibility STRF- Storage Tank Registration Form STP- Submersible Turbine Sump SV- Shear Valve SW- Single Walled SWSB- Single Walled Spill Bucket TCAR- Tank Closure Assessment Report TCI- Storage Tank Compliance Inspection **TIN- Storage Tank Installation Inspection TXI-** Storage Tank Closure Inspection TK- Tank **TS-** Transition Sump **UDC- Under Dispenser Containment UL- Unleaded** ULH- Unleaded Hose (Dispenses RUL and PUL)

Facility ID: 8839176

UO- Used Oil UST- Underground Storage Tank VR- Vapor Recovery VRTLS- Veeder Root

Inspector: Jay James A. Standiford IV (Jay) Environmental Specialist I Hazardous Materials Environmental Compliance Collier County SHWMD 239-207-0981- Cell James.Standiford@colliercountyfl.gov

10/19/2023 R21 was registered OOS on 8/1/2020. 1R1 12K DSL was registered OOS on 11/1/2022. 3R1 12K DSL was registered OOS on 11/1/2022. 4R1 5K DSL was registered OOS on 11/1/2022.


Violations cited in the 10-19-2021 inspection report have not been resolved.

This facility was referred to FDEP South District for enforcement on 11/3/2021.

This facility is being referred to FDEP South District for enforcement on 10/25/2023.

Inspection Photos

Added Date 10/18/2023 2023-10-11 TCI Facility Pic

Added Date 10/18/2023

2023-10-11 TCI PAV's Open

Added Date 10/19/2023 2023-10-11 TCI Exposed Fiberglass Piping

Added Date 10/19/2023 2023-10-11 TCI SW Steel Spill Containment

Added Date 10/19/2023 2023-01-11 TCI VRTLS Panel

From:	tankregistration
To:	Kellie Wendel; tankregistration
Cc:	COMBSOIL@EARTHLINK.NET
Subject:	FW: DEP Facility ID: 8839176
Date:	Monday, December 12, 2022 2:02:23 PM
Attachments:	FEDP-Immokalee BP.pdf
	image001.png

Good afternoon,

Per your request, tank information has been updated as Out of Service. Thank you.

Name COMBS OIL CO IMMOKALEE BULK FACILI				_					<u> </u>			
COMBS OI	L CO (ID #448	7)			-	В	F	-	4			
DENNIS CO	MBS				j	F	J	- 21	E			
6 INDUST	RIAL BLVD					0		-	K			
						S 🖵		Ţ		_		
NAPLES		FL 34	104					0		<u> </u>		
	sment begin	date is *		12/2022]							
	sment begin]	Co	ontent		Status	Last	Repl	
	sment begin	date is * T/V/D *	A/U *] Install		ontent Date		Status & Date	Updated on	Repl Tank	
ee asses:	-		A/U *		Install							
ee asses:	Tnk ID *	T/V/D *		Gallons	Install 02/1988	& D			& Date	Updated on		
ee asses:	Tnk ID *	T/V/D *	UN	Gallons 4000		& D D	Date	B	& Date 03/1988	Updated on 05/06/1994		
ee asses:	Tnk ID * 10 1R1	T/V/D * TANK TANK	UNUN	Gallons 4000 12000	02/1988	& D 8	Date 02/1988	B T	& Date 03/1988 11/2022	Updated on 05/06/1994 12/12/2022		4

Laurence Min Division of Waste Registration Florida Department of Environmental Protection Laurence.Min@Dep.State.Fl.Us Office: 850.245.8840

A Save a tree, please don't print this e-mail unless necessary

From: Kellie Wendel <kwendel.combs@gmail.com>
Sent: Friday, December 9, 2022 10:15 AM
To: tankregistration <tankregistration@dep.state.fl.us>
Subject: DEP Facility ID: 8839176

EXTERNAL MESSAGE

This email originated outside of DEP. Please use caution when opening attachments, clicking links, or responding to this email.

Please see attached Storage Tank Facility Registration for ID# 8839176 525 E Main Street, Immoklaee, Fl 34142. Combs Oil is filing new registration to show the change in the status of the tanks as out of service. If you have any questions please contact Dennis Combs at (239)774-2666. Thanks,Kellie Wendel, Sec. at Combs Oil Company

Theis, Nichole

From:	US - ENE - Team 6 Mail
То:	Tarver, Josh
Subject:	RE: Combs Oil Company Immokalee Bulk Facility; 525 E. Main St., Immokalee (Collier
	County), FL; FAC 118839176, P.O. B8C14B; MDM Project E20815

From: Jeff Morgan <jeff.morgan@mdmservices.com>
Sent: Thursday, July 29, 2021 4:35 PM
To: Tarver, Josh <<u>Josh.Tarver@wsp.com</u>>
Subject: Combs Oil Company Immokalee Bulk Facility; 525 E. Main St., Immokalee (Collier County), FL; FAC 118839176,
P.O. B8C14B; MDM Project E20815

Hello Josh,

Attached please find the current Health & Safety Plan (HASP) and Remedial Action Interim Report as prepared in accordance with Task 3 of the current P.O. The Task 3 Rate Sheet is also attached. Please let me know if you need anything additional during review. Thank You

Jeff Morgan, P.G.

Project Manager MDM SERVICES Inc.

🐛 <u>800-899-1794 ext.</u>3 📱 <u>863-559-4317</u> 🖷 863-648-1106

jeff.morgan@mdmservices.com www.mdmservices.com

• 1055 Kathleen Rd., Lakeland FL 33805

Engineering • Environmental • Construction - A Design Build Company

1055 Kathleen Road, Lakeland, FL 33805. Tel (863)646-9130 Fax (863)648-1106 www.mdmservices.com

July 29, 2021

Mr. Josh Tarver, Site Manager Florida Department of Environmental Protection Petroleum Restoration Program 2600 Blair Stone Rd Tallahassee, Florida 32399-2400

Re: Remedial Action Interim Report

Combs Oil Bulk Plant 525 East Main Street Immokalee (Collier County), Florida FDEP Facility #118839176 FDEP P.O. B8C14B; Task 3

Dear Mr. Tarver,

This correspondence and accompanying Appendices serve as the Remedial Action (RA) Interim Report for the above referenced site, performed in accordance with Task 3 of FDEP Purchase Order B8C14B. The appendices are compiled as follows:

Appendix A

Sheet 1	Site Plan
Sheet 2	VOCs in Groundwater
Sheet 3	TRPHs & Non-Carcinogenic PAHs in Groundwater
Sheet 4	Carcinogenic PAHs in Groundwater
Sheet 5	Water Table Elevation (July 8, 2021)

Appendix B

Groundwater Monitoring Well Analytical Summary – VOCs &
Metals
Groundwater Monitoring Well Analytical Summary – PAHs &
TRPHs
Groundwater Elevation Summary

Appendix C

Laboratory Analytical Report, Groundwater Sampling Logs, Field Instrument Calibration Records, Field Notes (July 8, 2021 sampling event)

The results of groundwater sampling as completed on July 8, 2021 pursuant to Task 3 of the current FDEP purchase order are discussed in the following Sections.

Site History

This site is an active bulk fuel storage facility storing unleaded gasoline and vehicular diesel fuel in underground storage tanks (USTs) as follows:

Diesel Fuel – stored in 2 USTs of 12,000 gallon and 10,000 gallon capacity Unleaded Gasoline – stored in 2 USTs of 12,000 gallon and 5,000 gallon capacity

These active USTs are adjacent to each other in a common UST field in the south/central portion of the site, immediately west of above-ground bulk propane storage tanks (see Sheet 1, Appendix A).

Throughout its history, 10 USTs of 4,000 gallon capacity each were formerly utilized to store vehicular diesel fuel at the site. These former USTs were located west of the current UST field, and have been removed.

This site has undergone active remediation as follows:

- In June 2001, a source removal excavation of the former UST field (immediately west of the active USTs) was conducted. A well-point dewatering system was utilized to enable excavation of saturated zone soils. Prior to dewatering, the water table was exposed, by excavation, and a vacuum truck was utilized to "skim" free product from the water table.
- A multi-phase extraction remedial system was utilized at the site from December 2001 through January 2005. This system primarily recovered free product and associated petroleum contaminated groundwater.
- An air sparging/soil vapor extraction (SVE) remedial system was utilized at the site from June 2005 through October 2008. This system was effective at temporarily achieving soil and groundwater cleanup target levels (CTLs); however, various petroleum constituents in the groundwater were detected above CTLs from groundwater samples obtained from monitoring wells in the general vicinity of the active USTs during subsequent post active remediation monitoring (PARM).

Various phases of PARM have been completed since the cessation of active remediation in October 2008, with groundwater sampling for the latest PARM event conducted in June 2020. From this event, TRPH was detected in groundwater samples obtained from monitoring well MW-7R at a concentration of 6,800 ug/L, exceeding the groundwater CTL of 5,000 ug/L. This was the only exceedance of groundwater CTLs from the June 2020 PARM event.

As CTLs were not maintained throughout PARM, additional remedial action was being considered in the general vicinity of the active UST field. The current

FDEP purchase order B8C14B was issued, which included the preparation of a Level 1 Limited Scope Remedial Action Plan (LSRAP) as Task 2. In April 2021, a pre-RAP teleconference was conducted, where various remedial methods were discussed. The use of a micro-carbon based product, such as "PetroFix", was deemed as potentially viable. However, additional groundwater sampling was reasoned to be warranted in order to evaluate current groundwater conditions in the active UST area prior determining the most optimum method for additional remediation. A change order to the purchase order was issued for the groundwater sampling of MWs 5, 6, 7R, 8, 12R, and 28R to determine concentrations of BTEX/MTBE, PAHs, and TRPHs. Further, the change order allowed for determining TRPH fractions for any of the groundwater samples in which TRPH was detected at concentrations exceeding the groundwater CTL of 5,000 ug/L.

Groundwater Sampling

On July 8, 2021, groundwater samples were obtained from MWs 5, 6, 7R, 8, 12R, and 28R to determine concentrations of BTEX/MTBE, PAHs, and TRPHs. The laboratory was instructed to determine concentrations of TRPH fractions for any groundwater sample in which the TRPH CTL was exceeded. The laboratory analytical report, groundwater sampling logs, field instrument calibration records, and field notes for this sampling event are compiled in Appendix C. The laboratory analytical results are summarized in Tables 1 and 2 (Appendix B) and are depicted at the respective monitoring well locations on Sheets 2 through 4 (Appendix A). As indicated from this most recent groundwater sampling event, no constituents were detected in any of the groundwater samples at concentrations exceeding respective groundwater CTLs. As such, TRPH fractional analyses were not performed.

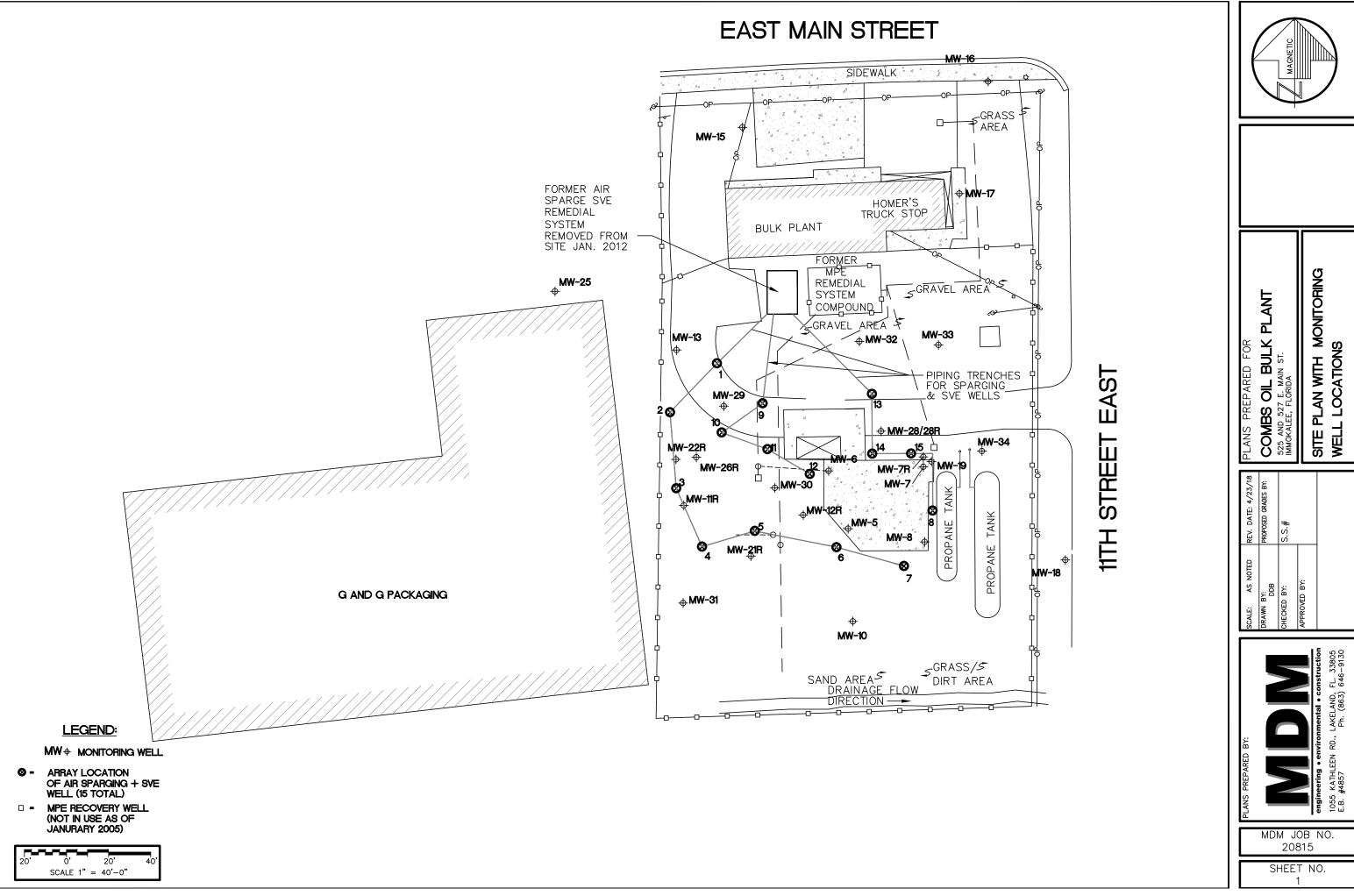
Water Table Elevation

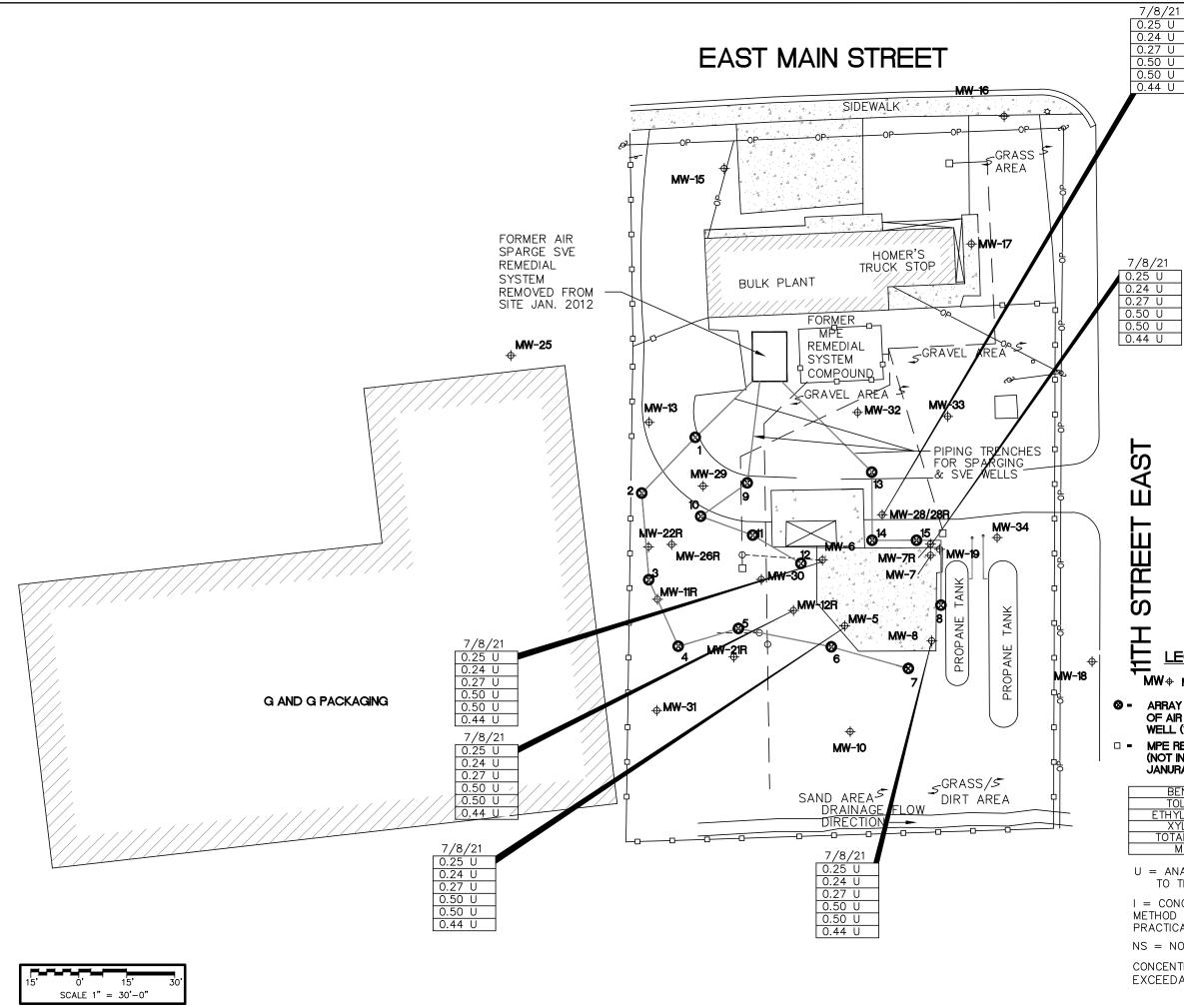
Water table measurements and associated elevations as obtained during the July 8, 2021 sampling of the various monitoring wells discussed above are compiled in Table 3 (Appendix B), which includes historical data. On the date of sampling, the water table was at approximately 6.5 ft. below ground level. Sheet 5 (Appendix A) is a map of the surficial aquifer water table elevation based on the water level/elevation measurements of July 8, 2021. The water table surface is relatively flat, but a general northeasterly direction of groundwater flow is inferred. This is consistent with previous groundwater elevation data.

Conclusion

Based on this most recent (7/8/2021) groundwater sampling event of MWs 5, 6, 7R, 8, 12R, and 28R, no constituents were detected in the groundwater samples at concentrations exceeding respective groundwater CTLs. Pending further discussion, it is thus recommended to re-implement PARM and forego additional active remediation at this time. If it is agreed to conduct additional PARM, consideration can be given to only include the sampling of MW-7R on either a quarterly or semi-

annual basis. From the most recent prior PARM sampling events, it was only TRPH found to exceed groundwater CTLs, this being in the MW-7R and MW-28R groundwater samples only. Although not completed in conjunction with PARM, TRPH was not detected above the CTL of 5,000 ug/L in groundwater samples most recently obtained (i.e. July 8, 2021). On this basis, 2 consecutive sampling events, conducted a minimum of 3 months apart, have been conducted for MW-28R for which the TRPH CTL was not exceeded. It can thus be argued additional sampling of MW-28R is not required. Regarding MW-7R, if TRPH is not detected above the CTL of 5,000 ug/L in a future sampling event conducted at least 3 months subsequent to July 8, 2021, it is reasoned unconditional no further action status could be considered for the site. Additional discussion regarding this matter is warranted.


Should you require additional information during review of this Report, please contact me at 863-646-9130 or via email to jeff.morgan@mdmservices.com.


Sincerely, MDM Services, Inc.

inta

Jeff Morgan, P.G. Project Manager

APPENDIX A

3,	/21
5	U
4	U
7	U
C	U
C	U
4	U

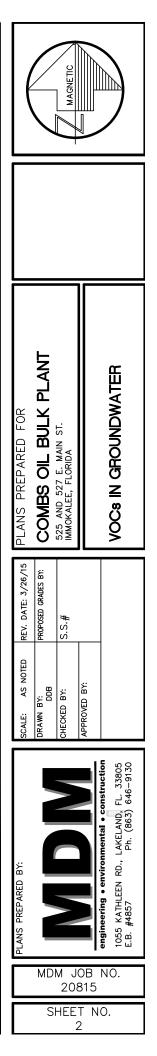
21	
U	
U	
U	
U	
U	
11	

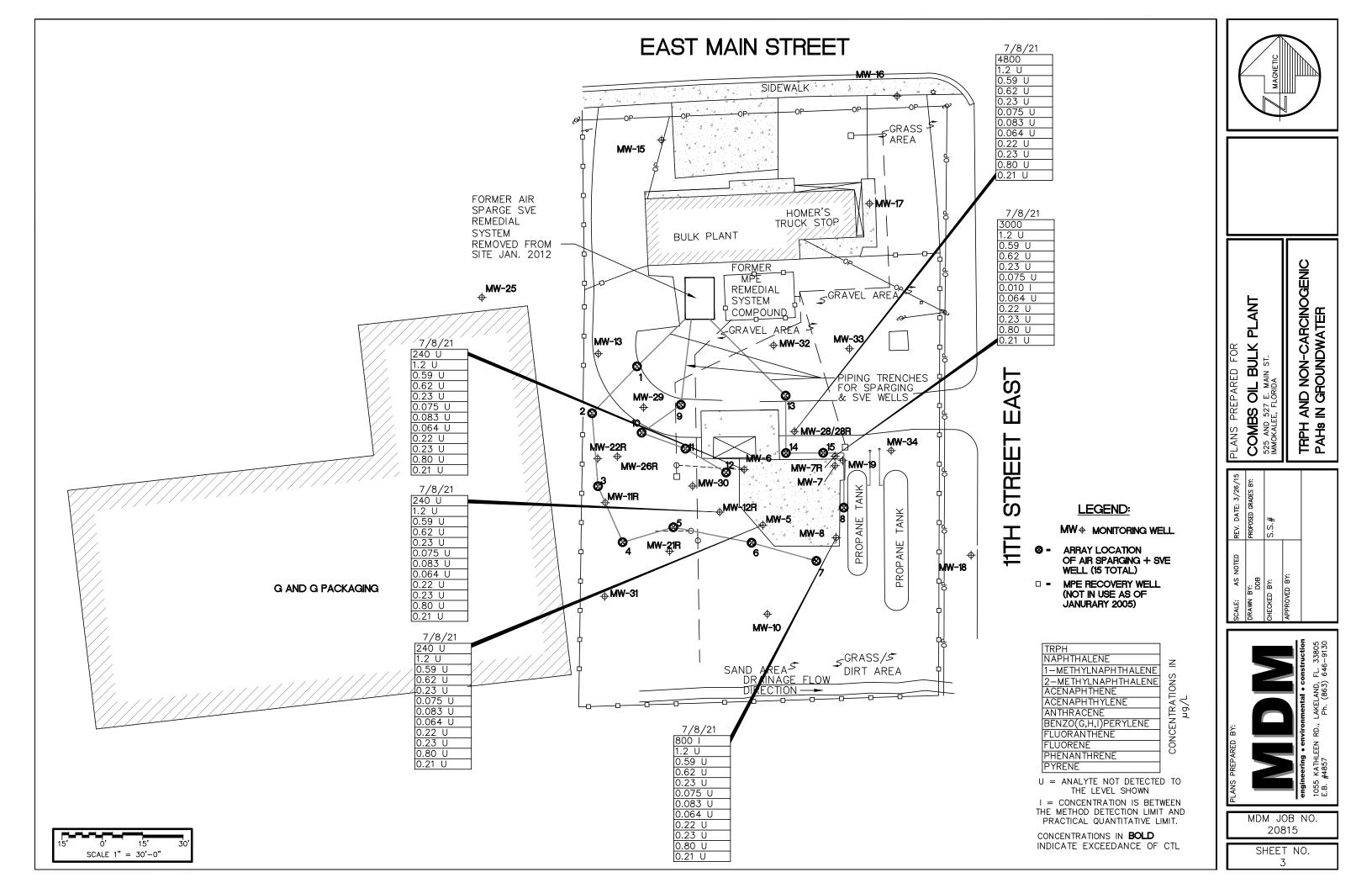
LEGEND:

MW & MONITORING WELL

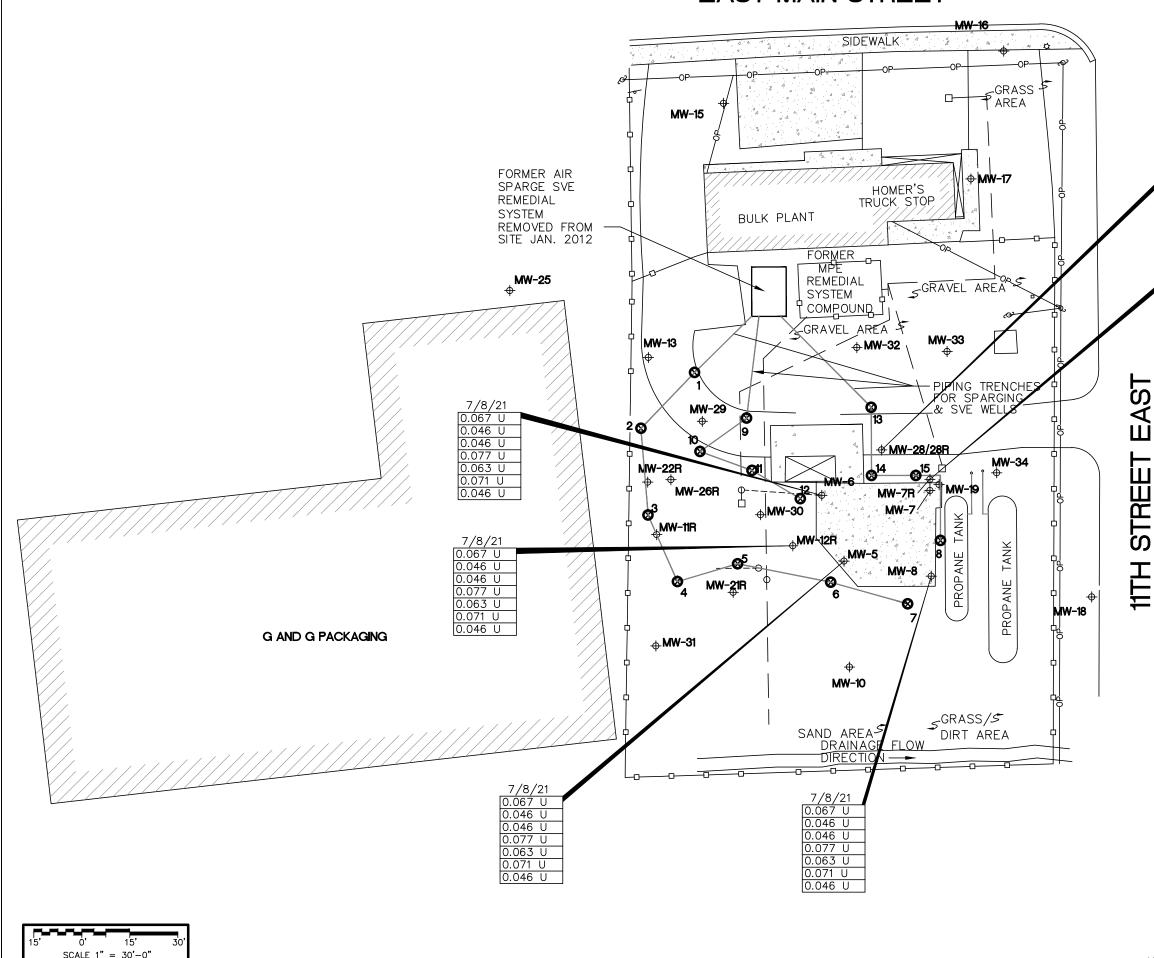
ARRAY LOCATION OF AIR SPARGING + SVE WELL (15 TOTAL)

MPE RECOVERY WELL (NOT IN USE AS OF JANURARY 2005)


BENZENE	
TOLUENE	
ETHYLBENZENE	CONCENTRATIONS IN
XYLENES	µa/L
TOTAL VOA'S	J 97 -
MTBE	

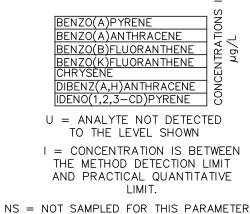

U = ANALYTE NOT DETECTEDTO THE LEVEL SHOWN

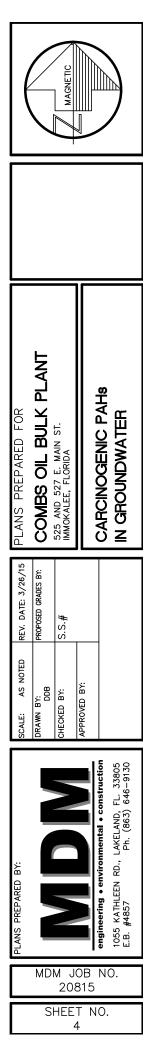
I = CONCENTRATION IS BETWEEN THEMETHOD DETECTION LIMIT AND THE PRACTICAL QUANTITATIVE LIMIT

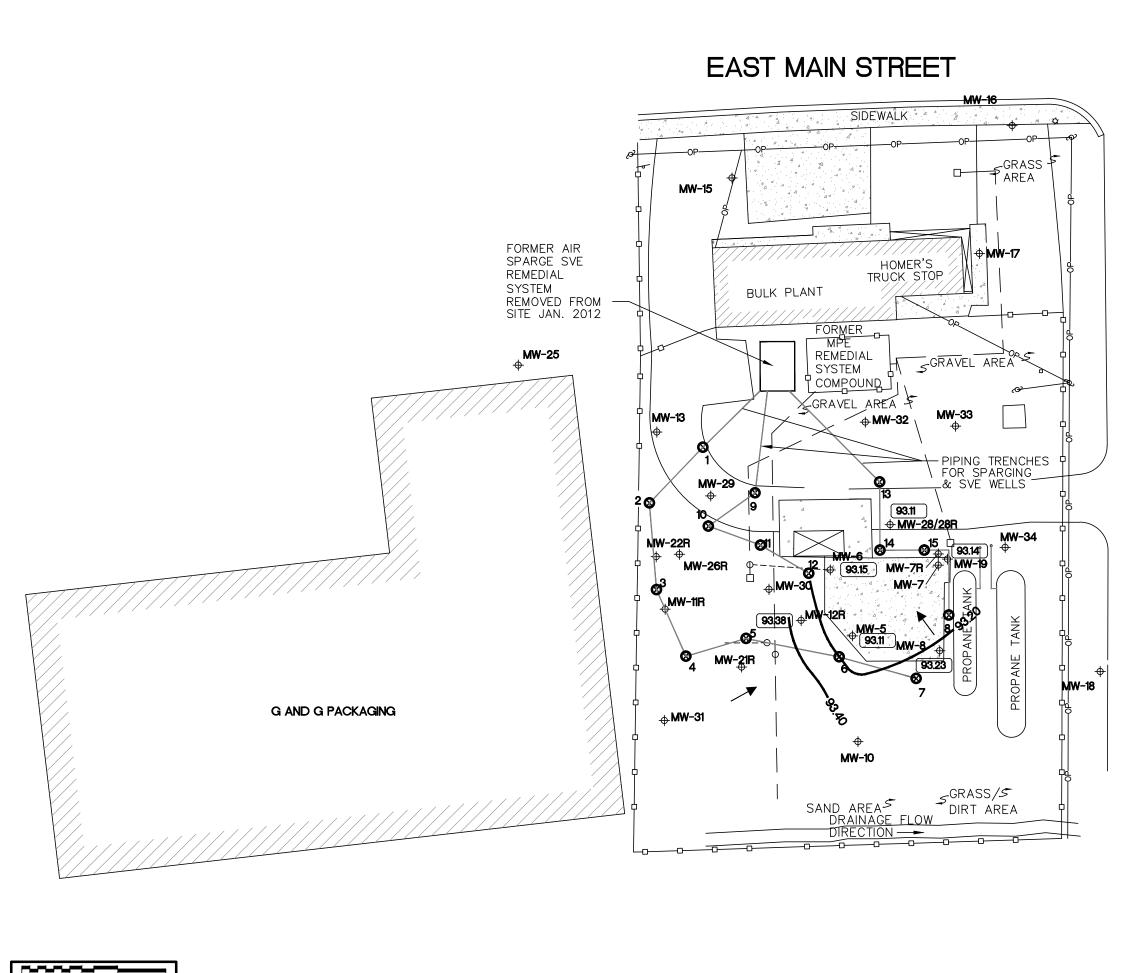

NS = NOT SAMPLED FOR THIS CONSTITUENT

CONCENTRATIONS IN **BOLD** INDICATE EXCEEDANCE OF CTL

EAST MAIN STREET

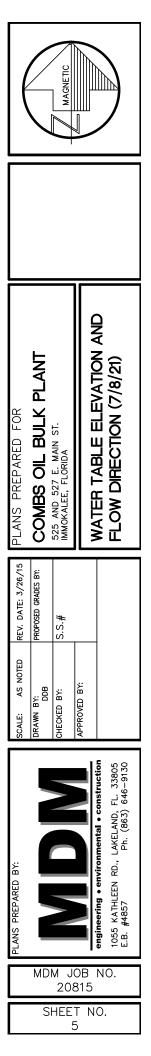



7/8/21
7/8/21 0.067 U 0.046 U 0.046 U
0.046 U
0.046 U
0.077 U
0.063 U
0.071 U
0.071 U 0.046 U
_7/8/21
7/8/21 0.067 U
0.046 U
0.046 U 0.046 U
0.046 U 0.046 U 0.077 U
0.046 U 0.046 U 0.077 U 0.063 U
0.046 U 0.046 U 0.077 U 0.063 U 0.071 U
0.046 U 0.046 U 0.077 U 0.063 U


MW + MONITORING WELL

Z

- **Ø** = ARRAY LOCATION OF AIR SPARGING + SVE WELL (15 TOTAL) □ = MPE RECOVERY WELL
- (NOT IN USE AS OF **JANURARY 2005)**



15'

SCALE 1'' = 30' - 0''

STRE

LEGEND:

MW + MONITORING WELL

- **© -** ARRAY LOCATION OF AIR SPARGING + SVE WELL (15 TOTAL)
- MPE RECOVERY WELL (NOT IN USE AS OF JANURARY 2005)
- (93.11) WATER TABLE ELEVATION (FT.)

FLOW DIRECTION

APPENDIX B

Facility ID#: 118839176

Sample		Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total VOAs	МТВЕ	EDB	1,2-Di- chloro- ethane	Total Lead
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1	2/9/99	1 U	1 U	1 U	3.0 U	1 U	3.0 U	NS	NS	NS
MW-2	2/9/99	15	1 U	80	3 U	95.00	3.0 U	NS	NS	NS
MW-4	2/9/99	212	10.0 U	64	30.0 U	276.00	30.0 U	NS	NS	NS
MW-5	2/9/99	133	5.0 U	5.0 U	15.0 U	133.00	15.O U	NS	NS	NS
	6/16/03	390	55.00	50 U	57	502.00	120	NS	NS	NS
	11/8/11	77.90	0.70	1.24	5.09	84.93	8.78	NS	NS	NS
	1/3/12	0.56	0.48 U	0.45 U	0.94 I	1.50	1.8	NS	NS	NS
	4/3/12	47.90	2.43	0.48 I	1.89	52.22	4.69	NS	NS	NS
	8/20/12	19.50	0.140 U	0.190 U	6.16	25.66	26.5	NS	NS	NS
	11/26/12	0.42 I	0.48 U	0.45 U	0.87 U	0.42	0.75 I	NS	NS	NS
	2/25/13	16.50	0.48 U	0.75	0.87 U	17.25	2.04	NS	NS	NS
	5/23/13	5.00	0.52	0.45 U	0.87 U	5.52	5.18	NS	NS	NS
	11/20/13	2.63	0.48 U	0.45 U	0.87 U	2.63	0.67 U	NS	NS	NS
	6/10/14	11.70	0.48 U	0.45 U	2.07	13.77	3.56	NS	NS	NS
	11/19/14	1.20	0.140 U	0.190 U	0.200 U	1.20	1.25	NS	NS	NS
	5/19/15	51.7	4.24	0.45	1.65	58.04	1.62	NS	NS	NS
	12/23/15	7.0	0.45 U	0.26 U	1.3 U	7.0	12	NS	NS	NS
	6/16/16	0.48 U 0.18 U	0.69 U 0.74 I	0.72 U 0.42 I	1.6 U 2.4	0 U 3.56	0.51 U 1.6	NS NS	NS NS	NS NS
	12/21/16 6/19/17	0.18 U 5.7	0.74 T 0.45 U	0.42 T	2.4 1.1 U	5.70	3.4	NS	NS	NS
	6/19/17 4/12/18	5.7	3.8	0.26 U	1.10	61.9	4.3	NS	NS	NS
	4/12/18 7/12/18	57 19	0.45 U	0.26 U	1.11	20.8	0.45 U	NS	NS	NS
	10/11/18	0.20 U	0.45 U	0.26 U	0.591	0.59	0.45 0 0.41 U	NS	NS	NS
	1/11/19	21.5	0.140 U	0.190 U	0.200 U	21.5	2.64	NS	NS	NS
	9/18/19	1.02	0.640	0.190 U	0.200 U	1.660	0.180 U	NS	NS	NS
	12/16/19	0.20 U	0.45 U	0.26 U	0.56 U	0.20 U	0.41 U	NS	NS	NS
	3/16/20	0.18 U	0.49 U	0.38 U	1.1 U	0.73 U	0.24 U	NS	NS	NS
	7/8/21	0.25 U	0.24 U	0.27 U	0.50 U	0.50 U	0.44 U	NS	NS	NS
	110/21									
MW-6	2/9/99	FP	FP	FP	FP	FP	FP	NS	NS	NS
	6/16/03	34	48	92	280	454	320	NS	NS	NS
	11/7/03	87	46	52	93	278	12	NS	NS	NS
	2/18/04	20	31.00	36	230	317	5.3	NS	NS	NS
	5/18/04	500	250	230	1100	2,080	110	NS	NS	NS
	8/26/04	1.70	1.00	1 U	2.3	5.00	5.4	NS	NS	NS
	9/28/05	ΙU	1 U	1 U	2 U	1 U	4	NS	NS	NS
	10/21/05	NS	NS	NS	NS	NS	NS	NS	NS	NS
			111	1 U	2 U	1 U	12	NS	NS	NS
	12/28/05	1 U	1 U	_						
	12/28/05 3/29/06	1 U 1 U	1 U	1 U	2 U	1 U	10	NS	NS	NS
					2 U 1 U	1 U 1 U	10 1 U	NS NS	NS NS	NS NS
	3/29/06	1 U	1 U	1 U						
	3/29/06 9/29/06	1 U 1 U	1 U 1 U	1 U 1 U	1 U	1 U	1 U	NS NS NS	NS NS NS	NS
	3/29/06 9/29/06 1/4/07	1 U 1 U 1 U	1 U 1 U 1 U	1 U 1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	NS NS NS NS	NS NS NS NS	NS NS
	3/29/06 9/29/06 1/4/07 1/11/08	1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U	1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 3.06 1 U 1 U	NS NS NS NS NS	NS NS NS NS NS	NS NS NS NS
	3/29/06 9/29/06 1/4/07 1/11/08 4/17/08 7/17/08 10/21/08	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 3.06 1 U 1 U 1 U	NS NS NS NS NS NS	NS NS NS NS NS NS	NS NS NS NS NS
	3/29/06 9/29/06 1/4/07 1/11/08 4/17/08 7/17/08 10/21/08 2/3/09	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 3.06 1 U 1 U 1 U 1 U	NS NS NS NS NS NS NS	NS NS NS NS NS NS	NS NS NS NS NS NS
	3/29/06 9/29/06 1/4/07 1/11/08 4/17/08 7/17/08 10/21/08 2/3/09 5/4/09	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 3.06 1 U 1 U 1 U 1 U 1 U 1 U	NSNSNSNSNSNSNSNS	NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS
	3/29/06 9/29/06 1/4/07 1/11/08 4/17/08 7/17/08 10/21/08 2/3/09 5/4/09 8/5/09	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0.1959 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0.2310 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0.1601 U	1 U 1 U 3.06 1 U 1 U 1 U 1 U 1 U 1 U 0.2562 U	NSNSNSNSNSNSNSNSNS	NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS
	3/29/06 9/29/06 1/4/07 1/11/08 4/17/08 7/17/08 10/21/08 2/3/09 5/4/09 8/5/09 10/28/09	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0.2310 U 0.82 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0.1601 U 0.36 U	1 U 1 U 3.06 1 U 1 U 1 U 1 U 1 U 1 U 0.2562 U 0.67 U	NSNSNSNSNSNSNSNSNSNSNS	NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS
	3/29/06 9/29/06 1/4/07 1/11/08 4/17/08 7/17/08 10/21/08 2/3/09 5/4/09 8/5/09 10/28/09 2/23/10	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0.29 0.36 U NS	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0.1601 U 0.36 U NS	1 U 1 U 3.06 1 U 1 U 1 U 1 U 1 U 1 U 0.2562 U 0.67 U NS	NSNSNSNSNSNSNSNSNSNSNSNSNS	NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS
y others	3/29/06 9/29/06 1/4/07 1/11/08 4/17/08 7/17/08 10/21/08 2/3/09 5/4/09 8/5/09 10/28/09 2/23/10 9/10/10	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0.1601 U 0.36 U NS 3.77	1 U 1 U 3.06 1 U 1 U 1 U 1 U 1 U 1 U 0.2562 U 0.67 U NS 9.93	NSNSNSNSNSNSNSNSNSNSNSNSNSNS	NS NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS
y others	3/29/06 9/29/06 1/4/07 1/11/08 4/17/08 7/17/08 10/21/08 2/3/09 5/4/09 8/5/09 10/28/09 2/23/10 9/10/10 11/5/10	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0.1601 U 0.36 U NS 3.77 2.97	1 U 1 U 3.06 1 U 1 U 1 U 1 U 1 U 0.2562 U 0.67 U NS 9.93 8.02	NSNSNSNSNSNSNSNSNSNSNSNSNSNSNSNS	NS NS NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS NS
/ others	3/29/06 9/29/06 1/4/07 1/11/08 4/17/08 7/17/08 10/21/08 2/3/09 5/4/09 8/5/09 10/28/09 2/23/10 9/10/10 11/5/10 11/8/11	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0.1601 U 0.36 U NS 3.77 2.97 0.36 U	1 U 1 U 3.06 1 U 1 U 1 U 1 U 1 U 1 U 0.2562 U 0.67 U NS 9.93 8.02 0.67 U	NSNSNSNSNSNSNSNSNSNSNSNSNSNSNSNSNS	NS NS NS NS NS NS NS NS NS NS NS NS NS N	NS NS NS NS NS NS NS NS NS NS NS
/ others	3/29/06 9/29/06 1/4/07 1/11/08 4/17/08 7/17/08 10/21/08 2/3/09 5/4/09 8/5/09 10/28/09 2/23/10 9/10/10 11/5/10 11/5/10 11/8/11 1/3/12	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 3.06 1 U 1 U 1 U 1 U 1 U 1 U 0.2562 U 0.67 U NS 9.93 8.02 0.67 U 0.67 U 0.67 U	NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N	NS NS NS NS NS NS NS NS NS NS NS NS
y others	3/29/06 9/29/06 1/4/07 1/11/08 4/17/08 7/17/08 10/21/08 2/3/09 5/4/09 8/5/09 10/28/09 2/23/10 9/10/10 11/5/10 11/8/11 1/3/12 4/3/12	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 3.06 1 U 1 U 1 U 1 U 1 U 1 U 0.2562 U 0.67 U NS 9.93 8.02 0.67 U 0.67 U 0.67 U 0.67 U	NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N	NS NS NS NS NS NS NS NS NS NS NS NS NS
y others	3/29/06 9/29/06 1/4/07 1/11/08 4/17/08 7/17/08 10/21/08 2/3/09 5/4/09 8/5/09 10/28/09 2/23/10 9/10/10 11/5/10 11/5/10 11/8/11 1/3/12 4/3/12 4/12/18	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 3.06 1 U 1 U 1 U 1 U 1 U 1 U 0.2562 U 0.67 U 0.67 U 0.67 U 0.67 U 0.67 U 0.67 U 0.41 U	NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N	NS NS NS NS NS NS NS NS NS NS NS NS NS N
y others	3/29/06 9/29/06 1/4/07 1/11/08 4/17/08 7/17/08 10/21/08 2/3/09 5/4/09 8/5/09 10/28/09 2/23/10 9/10/10 11/5/10 11/5/10 11/8/11 1/3/12 4/3/12 4/12/18 7/12/18	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 3.06 1 U 1 U 1 U 1 U 1 U 1 U 0.2562 U 0.67 U NS 9.93 8.02 0.67 U 0.67 U	NS	NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N
y others	3/29/06 9/29/06 1/4/07 1/11/08 4/17/08 7/17/08 10/21/08 2/3/09 5/4/09 8/5/09 10/28/09 2/23/10 9/10/10 11/5/10 11/5/10 11/5/10 11/8/11 1/3/12 4/3/12 4/12/18 7/12/18 10/11/18	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 3.06 1 U 1 U 1 U 1 U 1 U 1 U 0.2562 U 0.67 U 0.67 U 0.67 U 0.67 U 0.67 U 0.67 U 0.67 U 0.41 U	NS NS	NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N
y others	3/29/06 9/29/06 1/4/07 1/11/08 4/17/08 7/17/08 10/21/08 2/3/09 5/4/09 8/5/09 10/28/09 2/23/10 9/10/10 11/5/10 11/5/10 11/5/10 11/8/11 1/3/12 4/3/12 4/12/18 7/12/18 10/11/18 1/11/19	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 3.06 1 U 1 U 1 U 1 U 1 U 0.2562 U 0.67 U 0.41 U 6.3 0.41 U 0.180 U	NS NS	NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N
y others	3/29/06 9/29/06 1/4/07 1/11/08 4/17/08 7/17/08 10/21/08 2/3/09 5/4/09 8/5/09 10/28/09 2/23/10 9/10/10 11/5/10 11/5/10 11/5/10 11/8/11 1/3/12 4/3/12 4/3/12 4/12/18 7/12/18 10/11/18 1/11/19 9/18/19	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 3.06 1 U 1 U 1 U 1 U 1 U 1 U 0.2562 U 0.67 U 0.67 U 0.67 U 0.67 U 0.67 U 0.67 U 0.67 U 0.67 U 0.41 U 6.3 0.41 U 0.180 U 2.86	NS NS	NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N
y others	3/29/06 9/29/06 1/4/07 1/11/08 4/17/08 7/17/08 10/21/08 2/3/09 5/4/09 8/5/09 10/28/09 2/23/10 9/10/10 11/5/10 11/5/10 11/5/10 11/8/11 1/3/12 4/3/12 4/12/18 7/12/18 10/11/18 1/11/19	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 3.06 1 U 1 U 1 U 1 U 1 U 0.2562 U 0.67 U 0.41 U 6.3 0.41 U 0.180 U	NS NS	NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N

Facility ID#: 118839176

San	nple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total VOAs	МТВЕ	EDB	1,2-Di- chloro- ethane	Total Lead
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-7	2/9/99	FP	FP	FP	FP	FP	FP	NS	NS	NS
	6/16/03	360	50 U	50 U	50 U	360.0	1200	NS	NS	NS
	11/7/03	210	1.4	1.7	1 U	213.1	11	NS	NS	NS
	2/18/04	140	1 U	2.5	3.3	145.8	30	NS	NS	NS
	5/18/04	160	1.4	2	3	166.4	42	NS	NS	NS
	8/26/04	14	1 U	1.7	1.3	17.0	5 U	NS	NS	NS
	9/27/05	17	1 U	1 U	2 U	17.00	2	NS	NS	NS
	12/28/05	1 U	1 U	1 U	2 U	1U	5 U	NS	NS	NS
	3/29/06	11	1 U	1.2	2 U	12.2	4.8	NS	NS	NS
	9/29/06	1.1	1 U	1 U	1 U	1.10	1 U	NS	NS	NS
	1/4/07	1.6	1 U	1 U	1 U	1.6	1 U	NS	NS	NS
	8/10/07	1.15	1 U	1 U	1 U	1.15	1 U	NS	NS	NS
	1/11/08	1.2	1 U	1 U	1.62	2.82	1 U	NS	NS	NS
	4/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	7/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	10/21/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	2/3/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	5/4/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	8/5/09	0.77	0.35	0.1959 U	0.2310 U	1.1200	0.2562 U	NS	NS	NS
	10/28/09	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	0.67 U	NS	NS	NS
by others	9/10/10	0.400 I	0.470 U	0.520 U	0.980 U	0.400 I	0.720 I	NS	NS	NS
MW-7R	4/12/18	0.20 U	0.45 U	0.26 U	0.56 U	0.20 U	0.41 U	NS	NS	NS
	7/12/18	0.20 U	0.45 U	0.26 U	0.56 U	0.20 U	0.41 U	NS	NS	NS
	10/11/18	54	5.4	0.26 U	0.56 U	59.4	3.6	NS	NS	NS
	1/11/19	22.2	0.140 U	0.190 U	0.200 U	22.2	0.180 U	NS	NS	NS
	9/18/19	3.47	0.760	0.190 U	0.200 U	4.230	0.900	NS	NS	NS
	12/16/19	0.20 U	0.45 U	0.26 U	0.56 U	0.20 U	0.41 U	NS	NS	NS
	3/16/20	0.18 U	0.49 U	0.38 U	1.1 U	0.73 U	0.24 U	NS	NS	NS
	7/8/21	0.25 U	0.24 U	0.27 U	0.50 U	0.50 U	0.44 U	NS	NS	NS
MW-8	2/9/99	147.0	5.0 U	5.0 U	15.0 U	147.0	15.0 U	NS	NS	NS
	3/14/02	1 U	1 U	1 U	1 U	1 U	6.9	NS	NS	NS
	6/10/02	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	9/9/02	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	12/11/02	1 U	1 U	1 U	1 U	1 U	3	NS	NS	NS
	6/16/03	1 U	1.1	1 U	1 U	1.1	1 U	NS	NS	NS
	11/7/03	360	100 U	100 U	100 U	360	1600	NS	NS	NS
	5/18/04	400	6.6	1.4	1.2	409.2	37	NS	NS	NS
	8/26/04	2.8	1 U	1 U	1 U	2.8	5.1	NS	NS	NS
	9/28/05	28	2.4	1 U	2 U	30.4	15	NS	NS	NS
	12/28/05	31	1 U	1 U	2 U	31	12	NS	NS	NS
	3/29/06	24	1 U	1 U	2 U	24	4.6	NS	NS	NS
	9/29/06	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	1/5/07	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	8/10/07	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	1/11/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	4/18/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	7/17/08	10	1 U	10	1 U	1 U	1 U	NS	NS	NS
	10/21/08	10	1 U	10	1 U	1 U	1 U	NS	NS	NS
	2/3/09	10	1 U	10	1 U	1 U	6.82	NS	NS	NS
	5/4/09	10	1 U	10	1 U	1 U	14.5	NS	NS	NS
	8/5/09	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	0.2562 U	NS	NS	NS
	10/28/09	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	46.7	NS	NS	NS
		0.000	0.100	0.100	0.02 0	0.00 U	40.7	NC	NC	NC

	1/21/2010	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	41.5	NS	NS	NS
	2/23/10	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	1.82	NS	NS	NS
	6/23/10	NS	NS	NS	NS	NS	0.85 I	NS	NS	NS
by others	9/10/10	13.4	0.470 U	0.520 U	0.980 U	13	4.11	NS	NS	NS
	11/5/10	12.4	0.48 U	0.45 U	0.87 U	12	7.9	NS	NS	NS
	11/8/11	0.36 U	0.48 U	0.45 U	0.87 U	0.36 U	0.67 U	NS	NS	NS

Facility ID#: 118839176

Sam	ple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total VOAs	МТВЕ	EDB	1,2-Di- chloro- ethane	Total Lead
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-8	1/3/12	0.36 U	0.48 U	0.45 U	0.87 U	0.36 U	0.67 U	NS	NS	NS
	4/3/12	13.6	1.43	0.45 U	0.87 U	15.03	1.7	NS	NS	NS
	8/20/12	0.160 U	0.140 U	0.190 U	1.07	1.07	0.180 U	NS	NS	NS
	11/26/12	7.22	1.62	0.45 I	1.12 I	8.84	0.67 U	NS	NS	NS
	2/25/13	1.67	0.48 U	0.45 U	0.87 U	1.67	0.67 U	NS	NS	NS
	5/23/13	0.76	0.48 U	0.45 U	0.87 U	0.76	0.67 U	NS	NS	NS
	11/20/13	4.89	0.48 U	0.45 U	0.87 U	4.89	0.85 I	NS	NS	NS
	6/10/14	3.4	0.48 U	0.45 U	1.01 I	3.4	2.48	NS	NS	NS
	11/19/14	0.160 U	0.140 U	0.190 U	0.200 U	0.140 U	0.180 U	NS	NS	NS
	5/19/15	0.44 U	0.48 U	0.45 U	1.65 U	3.25 U	0.67 U	NS	NS	NS
	12/23/15	4.6	0.45 U	0.26 U	1.3 U	4.6	3.4	NS	NS	NS
	6/16/16	0.16 U	0.23 U	0.24 U	0.53 U	0 U	0.83 I	NS	NS	NS
	12/21/16	0.18 U	0.49 U	0.38 U	1.1 U	0 U	10	NS	NS	NS
	6/19/17	0.37 I	0.45 U	0.26 U	1.1 U	0.37	0.41 U	NS	NS	NS
	4/12/18	0.20 U	0.45 U	0.26 U	0.56 U	0.20 U	1.1	NS	NS	NS
	7/12/18	100	35	0.53 l	3.3	138.83	0.41 U	NS	NS	NS
	10/11/18	52	23	0.67 I	7.7	83.37	0.41 U	NS	NS	NS
	1/11/19	21.4	0.140 U	0.190 U	0.200 U	21.4	0.180 U	NS	NS	NS
	9/18/19	0.160 U	0.140 U	0.190 U	0.200 U	0.200 U	0.180 U	NS	NS	NS
	12/16/19	0.20 U	0.45 U	0.26 U	0.56 U	0.20 U	0.41 U	NS	NS	NS
	3/16/20	0.18 U	0.49 U	0.38 U	1.1 U	0.73 U	0.24 U	NS	NS	NS
	7/8/21	0.25 U	0.24 U	0.27 U	0.50 U	0.50 U	0.44 U	NS	NS	NS
MW-10	2/9/99	1 U	1 U	1 U	3.0 U	1 U	3.0 U	NS	NS	NS
	6/16/03	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
MW-11	5/11/99	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
MW-11R	6/16/03	140	17	2.4	58	217.4	18	NS	NS	NS
	11/6/03	14	3.9	1 U	7.9	25.8	5 U	NS	NS	NS
	5/18/04	1 U	1 U	1 U	1 U	1 U	110	NS	NS	NS
	8/26/04	64	14	30	45	153	7.1	NS	NS	NS
	3/28/06	15	5.5	51	171.1	242.6	1 U	NS	NS	NS
	9/29/06	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	1/5/07	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	1/11/08	1.75	2.09	10.9	44.7	59.44	1 U	NS	NS	NS
	4/18/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	7/17/08	1 U	1 U	1 U	1.54	1.54	1 U	NS	NS	NS
	10/21/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	2/3/09	1 U	1 U	2.22	16.2	18.42	1 U	NS	NS	NS
	5/4/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	8/5/09	0.2105 U	0.1601 U	0.24	1.01	1.25	0.2562 U	NS	NS	NS
	10/28/09	0.36 U	0.48 U	0.45 U	0.88	0.88	0.67 U	NS	NS	NS
by others	9/10/10	0.890 I	0.470 U	0.610 I	14.9	14.900	0.440 U	NS	NS	NS
MW-12	2/9/99	FP	FP	FP	FP	FP	FP	NS	NS	NS
	-			1			1	-		NS
MW-12R	3/14/02	110	20 U	63	130	303	1 U	NS	NS	
MW-12R	3/14/02 6/10/02	110 310		63 230	130 170	303 715.3	1 U 11	NS NS	NS NS	NS
MW-12R	6/10/02	310	5.3	230	170		11			NS NS
MW-12R						715.3		NS	NS	
MW-12R	6/10/02 9/9/02	310 100	5.3 2.5 4.2	230 12	170 14	715.3 128.5	11 7.8 6.4	NS NS	NS NS	NS
MW-12R	6/10/02 9/9/02 12/11/02 11/6/03	310 100 110	5.3 2.5	230 12 3.6	170 14 18 1.5	715.3 128.5 135.8	11 7.8 6.4 12	NS NS NS	NS NS NS	NS NS
MW-12R	6/10/02 9/9/02 12/11/02 11/6/03 2/18/04	310 100 110 2 1 U	5.3 2.5 4.2 1 U 1 U	230 12 3.6 1 U 1 U	170 14 18 1.5 1 U	715.3 128.5 135.8 3.5	11 7.8 6.4 12 <5	NS NS NS NS	NS NS NS NS	NS NS NS
MW-12R	6/10/02 9/9/02 12/11/02 11/6/03	310 100 110 2 1 U 1.2	5.3 2.5 4.2 1 U	230 12 3.6 1 U	170 14 18 1.5	715.3 128.5 135.8 3.5 1 U	11 7.8 6.4 12	NS NS NS NS NS	NS NS NS NS NS	NS NS NS NS
MW-12R	6/10/02 9/9/02 12/11/02 11/6/03 2/18/04 5/18/04 8/26/04	310 100 110 2 1 U 1.2 4.2	5.3 2.5 4.2 1 U 1 U 1 U 1 U	230 12 3.6 1 U 1 U 2.8	170 14 18 1.5 1 U 1 U 3.7	715.3 128.5 135.8 3.5 1 U 1.2	11 7.8 6.4 12 <5 30 7.7	NS NS NS NS NS NS	NS NS NS NS NS	NS NS NS NS NS
MW-12R	6/10/02 9/9/02 12/11/02 11/6/03 2/18/04 5/18/04 8/26/04 9/28/05	310 100 110 2 1 U 1.2 4.2 1 U	5.3 2.5 4.2 1 U 1 U 1 U 1 U 1 U	230 12 3.6 1 U 1 U 1 U 2.8 1 U	170 14 18 1.5 1 U 1 U 3.7 2 U	715.3 128.5 135.8 3.5 1 U 1.2 11.7	11 7.8 6.4 12 <5 30 7.7 5 U	NS NS NS NS NS NS NS	NS NS NS NS NS NS	NS NS NS NS NS NS
MW-12R	6/10/02 9/9/02 12/11/02 11/6/03 2/18/04 5/18/04 8/26/04 9/28/05 12/28/05	310 100 110 2 1 U 1.2 4.2 1 U 1 U	5.3 2.5 4.2 1 U 1 U 1 U 1 U 1 U 1 U 1 U	230 12 3.6 1 U 1 U 2.8 1 U 1 U	170 14 18 1.5 1 U 1 U 3.7 2 U 2 U	715.3 128.5 135.8 3.5 1 U 1.2 11.7 1 U 1 U 1 U	11 7.8 6.4 12 <5 30 7.7 5 U 47	NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS	NS NS NS NS NS NS
MW-12R	6/10/02 9/9/02 12/11/02 11/6/03 2/18/04 5/18/04 8/26/04 9/28/05 12/28/05 3/29/06	310 100 110 2 1 U 1.2 4.2 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	5.3 2.5 4.2 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	230 12 3.6 1 U 1 U 1 U 2.8 1 U 1 U 1 U 1 U	170 14 18 1.5 1 U 1 U 3.7 2 U 2 U 2 U	715.3 128.5 135.8 3.5 1 U 1.2 11.7 1 U	11 7.8 6.4 12 <5 30 7.7 5 U 47 12	NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS
MW-12R	6/10/02 9/9/02 12/11/02 11/6/03 2/18/04 5/18/04 8/26/04 9/28/05 12/28/05 3/29/06 9/29/06	310 100 110 2 1 U 1.2 4.2 1 U 1 U 1 U 1 U 1 U	5.3 2.5 4.2 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	230 12 3.6 1 U 1 U 2.8 1 U 1 U 1 U 1 U 1 U 1 U	170 14 18 1.5 1 U 1 U 3.7 2 U 2 U 2 U 2 U 1 U	715.3 128.5 135.8 3.5 1 U 1.2 11.7 1 U 1 U 1 U 1 U 1 U 1 U	11 7.8 6.4 12 <5 30 7.7 5 U 47 12 1 U	NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS
MW-12R	6/10/02 9/9/02 12/11/02 11/6/03 2/18/04 5/18/04 8/26/04 9/28/05 12/28/05 3/29/06 9/29/06 1/4/07	310 100 110 2 1 U 1.2 4.2 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	5.3 2.5 4.2 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	230 12 3.6 1 U 1 U 1 U 2.8 1 U 1 U 1 U 1 U 1 U 1 U 1 U	170 14 18 1.5 1 U 3.7 2 U 2 U 2 U 1 U 1 U	715.3 128.5 135.8 3.5 1 U 1.2 11.7 1 U 1 U 1 U 1 U 1 U 1 U 1 U	11 7.8 6.4 12 <5 30 7.7 5 U 47 12 1 U 1 U	NS NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS
MW-12R	6/10/02 9/9/02 12/11/02 11/6/03 2/18/04 5/18/04 8/26/04 9/28/05 12/28/05 3/29/06 9/29/06 1/4/07 1/11/08	310 100 110 2 1 U 1.2 4.2 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	5.3 2.5 4.2 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	230 12 3.6 1 U 1 U 1 U 2.8 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	170 14 18 1.5 1 U 3.7 2 U 2 U 2 U 1 U 1 U	715.3 128.5 135.8 3.5 1 U 1.2 11.7 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	11 7.8 6.4 12 <5 30 7.7 5 U 47 12 1 U 1 U 1 U	NSNSNSNSNSNSNSNSNSNSNSNSNSNSNSNS	NS NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS NS NS
MW-12R	6/10/02 9/9/02 12/11/02 11/6/03 2/18/04 5/18/04 8/26/04 9/28/05 12/28/05 3/29/06 9/29/06 1/4/07	310 100 110 2 1 U 1.2 4.2 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	5.3 2.5 4.2 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	230 12 3.6 1 U 1 U 1 U 2.8 1 U 1 U 1 U 1 U 1 U 1 U 1 U	170 14 18 1.5 1 U 3.7 2 U 2 U 2 U 1 U 1 U	715.3 128.5 135.8 3.5 1 U 1.2 11.7 1 U 1 U 1 U 1 U 1 U 1 U 1 U	11 7.8 6.4 12 <5 30 7.7 5 U 47 12 1 U 1 U	NS NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS

Facility ID#: 118839176

San	nple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total VOAs	МТВЕ	EDB	1,2-Di- chloro- ethane	Total Lead
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-13	2/9/99	1 U	1 U	1 U	3.0 U	1 U	3.0 U	NS	NS	NS
	6/16/03	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	1/31/06	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS
MW-14	2/9/99	2	1 U	1 U	3.0 U	2.00	3.00	NS	NS	NS
MW-15	2/9/99	1 U	1 U	1 U	3.0 U	1 U	3.0 U	NS	NS	NS
MW-16	2/9/99	1 U	1 U	1 U	3.0 U	1 U	3.0 U	NS	NS	NS
MW-17	2/9/99	1 U	1 U	1 U	3.0 U	1 U	3.0 U	NS	NS	NS
MW-18	2/9/99	1 U	1 U	1 U	3.0 U	1 U	3.0 U	NS	NS	NS
1010	4/3/12	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-19	2/9/99	1 U	1 U	1 U	3.0 U	1 U	3.0 U	NS	NS	NS
10107-10	4/3/12	N	NS	NS	NS	NS	NS	NS	NS	NS
MW-20	2/9/99	1 U	1 U	1 U	3.0 U	1 U	5.00	NS	NS	NS
MW-21	2/9/99	13	1 U	12	3.0 U	25.00	3.0 U	NS	NS	NS
/W-21R	6/16/03	470	50 U	50 U	94	564	320	NS	NS	NS
	11/6/03	1.8	1 U	1 U	1U	1.8	5 U	NS	NS	NS
	2/18/04	1 U	1 U	1 U	1U	10	5 U	NS	NS	NS
	5/18/04	10	1 U	1 U	1 U	10	5 U	NS	NS	NS
	8/26/04	2.5	1 U	1 U	1 U	2.5	7.6	NS	NS	NS
	9/28/05	1 U	1 U	1 U	2 U	10	5 U	NS	NS	NS
	12/28/05	1 U	1 U	1 U	2 U	10	5 U	NS	NS	NS
	3/28/06	1 U	1 U	1 U	2 U	1 U	1 U	NS	NS	NS
	9/29/06	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	1/4/07	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	4/18/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	7/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	10/21/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	2/3/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	5/4/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	8/5/09	0.2105 U	0.1601 U	0.1959 U	0.2105 U	0.1601 U	0.2562 U	NS	NS	NS
	10/28/09	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	0.67 U	NS	NS	NS
by others	9/10/10	0.350 U	0.470 U	0.520 U	0.980 U	0.350 U	0.440 U	NS	NS	NS
MW-22	5/11/99	FP	FP	FP	FP	FP	FP	NS	NS	NS
/W-22R	3/14/02	310	270	460	2000	3,040.00	20 U	NS	NS	NS
	6/10/02	540	520	660	1700	3,420.00	82	NS	NS	NS
	9/9/02	94	31	250	330	705.00	5 U	NS	NS	NS
	12/11/02	160	140	410	840	1,550.00	100 U	NS	NS	NS
	11/7/03	26	84	330	1500	1 0 10 00				NO
	2/18/04				1500	1,940.00	79	NS	NS	NS
		14	3.8	4.8	7.4	1,940.00 30.00	79 30	NS NS	NS NS	NS
	5/18/04	14 24	3.8 1 U							
	5/18/04 8/26/04			4.8	7.4	30.00	30	NS	NS	NS
		24	1 U	4.8 48	7.4 5	30.00 77	30 5 U	NS NS	NS NS	NS NS
	8/26/04	24 1 U	1 U 1.2	4.8 48 3	7.4 5 8.4	30.00 77 13	30 5 U 5 U	NS NS NS	NS NS NS	NS NS NS
	8/26/04 9/27/05	<mark>24</mark> 1 U 1 U	1 U 1.2 1 U	4.8 48 3 1 U	7.4 5 8.4 2 U	30.00 77 13 1 U	30 5 U 5 U 5 U 5 U	NS NS NS NS	NS NS NS NS	NS NS NS
	8/26/04 9/27/05 12/28/05	24 1 U 1 U 6.5	1 U 1.2 1 U 1 U	4.8 48 3 1 U 1 U	7.4 5 8.4 2 U 140	30.00 77 13 1 U 147	30 5 U 5 U 5 U 5 U 5 U	NS NS NS NS NS	NS NS NS NS NS	NS NS NS NS
	8/26/04 9/27/05 12/28/05 3/28/06	24 1 U 1 U 6.5 1 U	1 U 1.2 1 U 1 U 1.7	4.8 48 3 1 U 1 U 17	7.4 5 8.4 2 U 140 30.3	30.00 77 13 1 U 147 49.0	30 5 U 5 U 5 U 5 U 1 U	NS NS NS NS NS NS	NS NS NS NS NS NS	NS NS NS NS NS
	8/26/04 9/27/05 12/28/05 3/28/06 9/29/06	24 1 U 1 U 6.5 1 U 1 U	1 U 1.2 1 U 1 U 1.7 1 U	4.8 48 3 1 U 1 U 17 1 U	7.4 5 8.4 2 U 140 30.3 0.43	30.00 77 13 1 U 147 49.0 0.43	30 5 U 5 U 5 U 5 U 1 U 1 U	NS NS NS NS NS NS	NS NS NS NS NS NS NS	NS NS NS NS NS NS
	8/26/04 9/27/05 12/28/05 3/28/06 9/29/06 1/4/07	24 1 U 1 U 6.5 1 U 1 U 2.9	1 U 1.2 1 U 1 U 1.7 1 U 10	4.8 48 3 1 U 1 U 17 1 U 18	7.4 5 8.4 2 U 140 30.3 0.43 63.5	30.00 77 13 1 U 147 49.0 0.43 94.4	30 5 U 5 U 5 U 5 U 1 U 1 U 1 U	NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS
	8/26/04 9/27/05 12/28/05 3/28/06 9/29/06 1/4/07 8/10/07	24 1 U 1 U 6.5 1 U 1 U 2.9 1 U	1 U 1.2 1 U 1 U 1.7 1 U 10 1 U	4.8 48 3 1 U 1 U 17 1 U 18 1 U	7.4 5 8.4 2 U 140 30.3 0.43 63.5 1 U	30.00 77 13 1 U 147 49.0 0.43 94.4 1 U	30 5 U 5 U 5 U 5 U 1 U 1 U 1 U 1 U 1 U	NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS
	8/26/04 9/27/05 12/28/05 3/28/06 9/29/06 1/4/07 8/10/07 1/11/08	24 1 U 1 U 6.5 1 U 1 U 2.9 1 U 1 U	1 U 1.2 1 U 1 U 1.7 1 U 10 1 U 1 U	4.8 48 3 1 U 1 U 17 1 U 18 1 U 1 U 1 U	7.4 5 8.4 2 U 140 30.3 0.43 63.5 1 U 1 U	30.00 77 13 1 U 147 49.0 0.43 94.4 1 U 1 U	30 5 U 5 U 5 U 1 U 1 U 1 U 1 U 1 U 1 U	NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS
	8/26/04 9/27/05 12/28/05 3/28/06 9/29/06 1/4/07 8/10/07 1/11/08 4/17/08	24 1 U 1 U 6.5 1 U 1 U 2.9 1 U 1 U 1 U	1 U 1.2 1 U 1 U 1.7 1 U 10 1 U 1 U 1 U 1 U 1 U	4.8 48 3 1 U 1 U 17 1 U 18 1 U 1 U 1 U 1 U 1 U	7.4 5 8.4 2 U 140 30.3 0.43 63.5 1 U 1 U 1 U	30.00 77 13 1 U 147 49.0 0.43 94.4 1 U 1 U 1 U	30 5 U 5 U 5 U 5 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS
	8/26/04 9/27/05 12/28/05 3/28/06 9/29/06 1/4/07 8/10/07 1/11/08 4/17/08 7/17/08	24 1 U 1 U 6.5 1 U 1 U 2.9 1 U 1 U 1 U 1 U 1 U	1 U 1.2 1 U 1 U 1.7 1 U 10 1 U 1 U 1 U 1 U 1 U 1 U 1 U	4.8 48 3 1 U 1 U 17 1 U 18 1 U 1 U 1 U 1 U 1 U 1 U	7.4 5 8.4 2 U 140 30.3 0.43 63.5 1 U 1 U 1 U 1 U 1 U	30.00 77 13 1 U 147 49.0 0.43 94.4 1 U 1 U 1 U 1 U 1 U	30 5 U 5 U 5 U 1	NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS
	8/26/04 9/27/05 12/28/05 3/28/06 9/29/06 1/4/07 8/10/07 1/11/08 4/17/08 7/17/08 10/21/08	24 1 U 1 U 6.5 1 U 1 U 2.9 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1.2 1 U 1 U 1.7 1 U 10 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	4.8 48 3 1 U 1 U 17 1 U 18 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	7.4 5 8.4 2 U 140 30.3 0.43 63.5 1 U 1 U 1 U 1 U 1 U 1 U	30.00 77 13 1 U 147 49.0 0.43 94.4 1 U 1 U 1 U 1 U 1 U 1 U 1 U	30 5 U 5 U 5 U 1	NS NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N	NS NS NS NS NS NS NS NS NS NS NS
	8/26/04 9/27/05 12/28/05 3/28/06 9/29/06 1/4/07 8/10/07 1/11/08 4/17/08 7/17/08 10/21/08 2/3/09	24 1 U 1 U 6.5 1 U 1 U 2.9 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1.2 1 U 1 U 1 U 1.7 1 U 10 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	4.8 48 3 1 U 1 U 1 V 17 1 U 18 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	7.4 5 8.4 2 U 140 30.3 0.43 63.5 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	30.00 77 13 1 U 147 49.0 0.43 94.4 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	30 5 U 5 U 5 U 5 U 1	NS NS NS NS NS NS NS NS NS NS NS NS NS N	NS NS NS NS NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS NS NS NS
	8/26/04 9/27/05 12/28/05 3/28/06 9/29/06 1/4/07 8/10/07 1/11/08 4/17/08 7/17/08 10/21/08 2/3/09 5/4/09	24 1 U 1 U 6.5 1 U 1 U 2.9 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1.2 1 U 1 U 1 U 1.7 1 U 10 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	4.8 48 3 1 U 1 U 17 1 U 18 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	7.4 5 8.4 2 U 140 30.3 0.43 63.5 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	30.00 77 13 1 U 147 49.0 0.43 94.4 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	30 5 U 5 U 5 U 5 U 1	NS NS NS NS NS NS NS NS NS NS NS NS NS N	NS NS NS NS NS NS NS NS NS NS NS NS NS N	NS NS NS NS NS NS NS NS NS NS NS NS
y others	8/26/04 9/27/05 12/28/05 3/28/06 9/29/06 1/4/07 8/10/07 1/11/08 4/17/08 7/17/08 10/21/08 2/3/09 5/4/09 8/5/09	24 1 U 1 U 6.5 1 U 1 U 2.9 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1.2 1 U 1 U 1.7 1 U 10 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	4.8 48 3 1 U 1 U 17 1 U 18 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	7.4 5 8.4 2 U 140 30.3 0.43 63.5 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	30.00 77 13 1 U 147 49.0 0.43 94.4 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	30 5 U 5 U 5 U 5 U 1	NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N	NS NS NS NS NS NS NS NS NS NS NS NS NS
	8/26/04 9/27/05 12/28/05 3/28/06 9/29/06 1/4/07 8/10/07 1/11/08 4/17/08 7/17/08 10/21/08 2/3/09 5/4/09 8/5/09 10/28/09	24 1 U 1 U 6.5 1 U 1 U 2.9 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1.2 1 U 1 U 1.7 1 U 10 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	4.8 48 3 1 U 1 U 17 1 U 18 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	7.4 5 8.4 2 U 140 30.3 0.43 63.5 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	30.00 77 13 1 U 147 49.0 0.43 94.4 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	30 5 U 5 U 5 U 5 U 1	NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N	NS NS NS NS NS NS NS NS NS NS NS NS NS N
MW-23	8/26/04 9/27/05 12/28/05 3/28/06 9/29/06 1/4/07 8/10/07 1/11/08 4/17/08 7/17/08 10/21/08 2/3/09 5/4/09 8/5/09 10/28/09 9/10/10 2/9/99	24 1 U 1 U 6.5 1 U 1 U 2.9 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1.2 1 U 1 U 1 U 1.7 1 U 10 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	4.8 48 3 1 U 1 U 1 U 17 1 U 18 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	7.4 5 8.4 2 U 140 30.3 0.43 63.5 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	30.00 77 13 1 U 147 49.0 0.43 94.4 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0.1601 U 0.36 U 0.350 U 21.0	30 5 U 5 U 5 U 5 U 1	NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N	NS
y others MW-23 MW-25 MW-26	8/26/04 9/27/05 12/28/05 3/28/06 9/29/06 1/4/07 8/10/07 1/11/08 4/17/08 7/17/08 10/21/08 2/3/09 5/4/09 8/5/09 10/28/09 9/10/10 2/9/99	24 1 U 1 U 6.5 1 U 1 U 2.9 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1.2 1 U 1 U 1 U 1.7 1 U 10 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	4.8 48 3 1 U 1 U 1 T 1 U 17 1 U 18 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	7.4 5 8.4 2 U 140 30.3 0.43 63.5 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	30.00 77 13 1 U 147 49.0 0.43 94.4 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0.1601 U 0.36 U 0.350 U 21.0 1 U	30 5 U 5 U 5 U 5 U 1	NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N	NS NS
MW-23	8/26/04 9/27/05 12/28/05 3/28/06 9/29/06 1/4/07 8/10/07 1/11/08 4/17/08 7/17/08 10/21/08 2/3/09 5/4/09 8/5/09 10/28/09 9/10/10 2/9/99	24 1 U 1 U 6.5 1 U 1 U 2.9 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1.2 1 U 1 U 1 U 1.7 1 U 10 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	4.8 48 3 1 U 1 U 1 U 17 1 U 18 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	7.4 5 8.4 2 U 140 30.3 0.43 63.5 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	30.00 77 13 1 U 147 49.0 0.43 94.4 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0.1601 U 0.36 U 0.350 U 21.0	30 5 U 5 U 5 U 5 U 1	NS	NS NS NS NS NS NS NS NS NS NS NS NS NS N	NS NS NS NS NS NS NS NS NS NS NS NS NS N

Facility ID#: 118839176

San	nple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total VOAs	МТВЕ	EDB	1,2-Di- chloro- ethane	Total Lead
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-27	5/11/99	9.60	1 U	4.40	1.90	15.90	7.80	NS	NS	NS
MW-28	11/7/03	270	16	280	350	916	16	NS	NS	NS
	2/18/04	340	13	250	280	883	50 U	NS	NS	NS
	5/18/04	140	2.1	160	81	383.1	12	NS	NS	NS
	8/26/04	1200	230	390	710	2,530	410	NS	NS	NS
	9/27/05	24	1.3	15	28	68.3	6.5	NS	NS	NS
	12/28/05	36	1 U	1 U	2 U	36	24	NS	NS	NS
	3/29/06	86	3.5	30	49.9	169.4	12	NS	NS	NS
	9/29/06	960	70	480	880	2,390	110	NS	NS	NS
	1/5/07	110	7.6	72	109	298.6	18 I	NS	NS	NS
	8/10/07	38.9	1.15	48.8	36.6	125.5	6.17	NS	NS	NS
	1/11/08	17.9	1 U	25.4	18.6	61.90	3.63	NS	NS	NS
	4/18/08	1.56	1 U	13.4	10.3	25.26	4.41	NS	NS	NS
	07/17/08	1 U	1 U	1 U	1 U	10	1 U	NS	NS	NS
	10/21/08	1 U	1 U	1 U	1 U	10	1 U	NS	NS	NS
	2/3/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	5/4/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	8/5/09	0.2105 U	0.1601 U	0.22	0.2310 U	0.22	0.2562 U	NS	NS	NS
	10/28/09	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	0.67 U	NS	NS	NS NS
by others	9/10/10	0.350 U	0.470 U	0.520 U	0.980 U	0.350 U	0.830	NS	NS	
MW-28R	4/12/18	0.20 U	0.45 U	0.26 U	0.56 U	0.20 U 1.2	0.41 U	NS NS	NS NS	NS NS
	7/12/18	0.20 U	0.45 U	0.26 U	1.2 I	0.20 U	6.0	NS	NS	NS
	10/11/18 1/11/19	0.20 U 0.160 U	0.45 U 0.140 U	0.26 U 0.190 U	0.56 U 0.200 U	0.20 U	0.41 U 0.180 U	NS	NS	NS
	9/18/19	0.160 U	0.140 U	0.190 U	0.200 U	0.200 U	0.180 U	NS	NS	NS
	12/16/19	0.100 U	0.140 U	0.190 U	0.200 U	0.20 U	0.41 U	NS	NS	NS
	3/16/20	0.18 U	0.49 U	0.38 U	1.1 U	0.73 U	0.24 U	NS	NS	NS
	7/8/21	0.25 U	0.24 U	0.27 U	0.50 U	0.50 U	0.44 U	NS	NS	NS
	1/0/21	0.20 0	0.210	0.27 0	0.000	0.000	00			
MW-29	11/7/03	2900	100 U	4400	2900	10,200	500 U	NS	NS	NS
	2/18/04					no san	nple			1
	5/18/04	3700	18	5000	380	9,098	50 U	NS	NS	NS
	8/26/04	1800	54	4800	560	7,214	250 U	NS	NS	NS
	9/27/05	100	2.5	180	110	393	2	NS	NS	NS
	12/28/05	98	1 U	110	43	251	5 U	NS	NS	NS
	1/31/06	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/28/06	2.4	1 U	7.7	2 U	10	1 U	NS	NS	NS
	9/29/06	1.3	1 U	1.5	1 U	2.8	1 U	NS	NS	NS
	1/5/07	0.14 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	8/10/07	4.04	1 U	1 U	1 U	4.04	1 U	NS	NS	NS
	1/11/08	1 U	10	1 U	1 U	10	1 U	NS	NS	NS
	4/18/08	1 U	1 U	1 U	1 U	10	1 U	NS	NS	NS
	07/17/08	1 U	1 U	1 U	1 U	10	10	NS	NS	NS
	10/21/08	1 U	1 U	1 U	1 U	10	10	NS	NS	NS
	2/3/09	1 U	1 U	1 U	1 U	10	10	NS	NS	NS
	5/4/09	1 U	1 U	1 U	1 U	10	1 U	NS	NS	NS
	8/5/09	1.23	0.1601 U	0.1959 U	0.2310 U	1.23	0.7800	NS	NS	NS
	10/28/09	0.94	0.48 U	0.45 U	0.82 U	0.94	0.67 U	NS	NS	NS
	2/23/10	NS	NS	NS	NS	NS	NS	NS	NS	NS
by other-		5.0	0 470 11	0 500 11						
by others	9/10/10	5.3	0.470 U	0.520 U	0.980 U	5.3 23.03	0.440 U	NS	NS	NS
by others		5.3 9.15 0.8	0.470 U 0.48 U 0.48 U	0.520 U 7.12 0.45 U	0.980 U 6.76 0.87 U	5.3 23.03 0.8	0.440 U 0.67 U 0.67 U	NS NS NS	NS NS NS	NS NS NS

Facility ID#: 118839176

Facility Name: Combs Oil Bulk Plant

San	nple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total VOAs	МТВЕ	EDB	1,2-Di- chloro- ethane	Total Lead
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-30	11/6/03	2	1 U	1.5	1 U	3.5	5 U	NS	NS	NS
	2/18/04	3.5	1 U	1 U	1 U	3.5	5 U	NS	NS	NS
	5/18/04	8.7	1 U	1 U	1 U	8.7	5 U	NS	NS	NS
	8/26/04	29	2.6	6.9	20	58.5	5 U	NS	NS	NS
	9/28/05	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS
	12/28/05	1 U	1 U	1 U	2 U	1 U	20	NS	NS	NS
	3/29/06	1 U	1 U	1 U	2 U	1 U	16	NS	NS	NS
	9/29/06	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	1/4/07	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	1/11/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	4/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	7/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	10/21/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	2/3/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	5/4/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	8/5/09	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	0.2562 U	NS	NS	NS
	10/28/09	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	0.67 U	NS	NS	NS
	2/23/10	NS	NS	NS	NS	NS	NS	NS	NS	NS
by others	9/10/10	0.350 U	0.470 U	0.520 U	0.980 U	0.350 U	0.830 I	NS	NS	NS
MW-31	11/6/03	1 U	1.8	1.9	3	6.70	5 U	NS	NS	NS
	5/18/04	1 U	1 U	1 U	1 U	1 U	5 U	NS	NS	NS
	8/26/04	1 U	1 U	1 U	1 U	1 U	5 U	NS	NS	NS
	9/28/05	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS
	12/28/05	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS
	3/28/06	1 U	1 U	1 U	2 U	1 U	1 U	NS	NS	NS
	9/29/06	10	1 U	1 U	2 U	1 U	1 U	NS	NS	NS
	1/5/07	1 U	1 U	1 U	2 U	1 U	1 U	NS	NS	NS
	1/11/08	1 U	1 U	1 U	2 U	1U	1 U	NS	NS	NS
	4/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	7/17/08	10	10	1 U	1 U	1 U	1 U	NS	NS	NS
	10/21/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	2/3/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	5/4/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	8/5/09	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	0.2562 U	NS	NS	NS
	10/28/09	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	0.67 U	NS	NS	NS
MW-32	1/31/06	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS
MW-33	1/31/06	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS
	2/23/10	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/3/12	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-34	8/20/12	0.160 U	0.140 U	0.190 U	0.510 U	0.140 U	0.180 U	NS	NS	NS
10100-04	11/26/12	0.36 U	0.140 U	0.190 U	0.87 U	0.140 U	0.67 U	NS	NS	NS
	2/25/13	0.36 U NS	0.48 0 NS	0.45 0 NS	NS	0.30 U NS	0.07 0	NS	NS	NS
	5/23/13	NS	NS	NS	NS	NS	NS	NS	NS	NS
ЦОІ	3/14/02	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
HRL										
	6/10/02	1 U	1 U	1 U	1 U	1U	10	NS	NS	NS
	9/9/02	10	1 U	1 U	1 U	10	10	NS	NS	NS
	12/11/02	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS
	TLs	1**	40**	30**	20**	NA	20	0.02**	3**	15**
NAI	DCs	100	400	300	200	NA	200	2	300	150

Notes:

NS = Not Sampled.

GCTLs = Groundwater Cleanup Target Levels specified in Table I of Chapter 62-777, F.A.C.

NADCs = Natural Attenuation Default Source Concentrations specified in Table V of Chapter 62-777, F.A.C.

** = As provided in Chapter 62-550, F.A.C.

U = Constituent was not detected to the level indicated; I = concentration is between the method detection limit and the practival quantitative limit.

Facility ID#: 118839176

Facility Name: Combs Oil Bulk Plant

Sam	nple	TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-2	2/9/99	NS	1,419	1 U	1 U	29	37	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-4	2/9/99	NS	74	1 U	1 U	21	25	1 U	1 U	1 U	24.00	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-5	2/9/99	NS	22.0	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	6/16/03	NS	23	5.9	3.7	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	11/8/11	160 U	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.060 U	0.043 U	0.113 U	0.160 U	0.047 U	0.128 U	0.067 U	0.044 U	0.023 U	0.052 U	0.054 U	0.004 U	0.044 U
	1/3/12	307 I	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.060 U	0.043 U	0.113 U	0.160 U	0.047 U	0.128 U	0.067 U	0.044 U	0.023 U	0.052 U	0.054 U	0.004 U	0.044 U
	4/3/12	170 I	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.060 U	0.043 U	0.113 U	0.160 U	0.059 I	0.128 U	0.067 U	0.044 U	0.023 U	0.052 U	0.054 U	0.004 U	0.044 U
	4/12/18	560 U	0.18 U	0.18 U	0.18 U	0.15 U	0.16 U	0.13 U	0.18 U	0.14 U	0.14 U	0.15 U	0.13 U	0.14 U	0.046 U	0.046 U	0.18 U	0.12 U	0.088 U	0.041 U
	7/12/18	580 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/11/18	590 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/11/19	263	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/18/19	378	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/16/19	570 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/16/20	570 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/8/21	240 U	1.2 U	0.59 U	0.62 U	0.23 U	0.075 U	0.083 U	0.064 U	0.22 U	0.23 U	0.80 U	0.21 U	0.067 U	0.046 U	0.046 U	0.077 U	0.063 U	0.071 U	0.046 U
MW-6	2/9/99	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP
	6/16/03	NS	510	1400	1800	100	10 U	1 U	1 U	1 U	190	360	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	11/7/03	9,700	12	37	17	2.8	1 U	1 U	1 U	1 U	3.6	3.3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/18/04	NS	1 U	5.5	1 U	1.5	1 U	1 U	1 U	1 U	1.3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/18/04	NS	25	13	16	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/26/04	NS	10 U	16	12	13	10 U	1 U	1 U	1 U	15	23	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	10/21/05	NS	16	34	30	2.7	1 U	1 U	1 U	1 U	2.5	1.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/28/05	NS	4.8	6	7.5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	3/29/06	NS	19	36	46	2.5	1 U	1 U	1 U	1 U	2.5	2.3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	1/4/07	NS	6.9	12	13	1.2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	1/11/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/17/08	NS	4.56	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	7/17/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	10/21/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/3/09	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/4/09	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.29	1.20	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
			0.027	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.001 U	0.001 U	0.099	0.001 U	0.001 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U
	8/5/09	NS	0.037	0.0000					i.			+	1	1	1	1			1	1
	8/5/09 10/28/09	NS NS	0.037 0.173 U	0.153 U	0.473	0.218	0.098 U	0.098 U	0.098 U	0.098 U	0.160 U	0.160 U	0.128 U	0.067 U	0.067 U	0.067 U	0.052 U	0.054 U	0.054 U	0.054 U
						0.218 NS	0.098 U NS	0.098 U NS	0.098 U NS	0.098 U NS	0.160 U NS	0.160 U NS	0.128 U NS	0.067 U NS	0.067 U NS	0.067 U NS	0.052 U NS	0.054 U NS	0.054 U NS	0.054 U NS

Facility ID#: 118839176

Facility Name: Combs Oil Bulk Plant

Sam	ple	TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-6	1/3/12	3,827	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/3/12	1,569	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/25/13	4,582	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/23/13	2,865	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/20/13	2,961	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/10/14	6,210	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/19/14	2,170	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/19/15	9,560	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/23/15	1,300	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/16/16	1,100	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/21/16	3,200	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/19/17	760	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/12/18	15,000	0.40	5.7	7.3	3.2	0.16 U	0.63	0.18 U	0.36	3.0	1.7	2.8	0.14 U	0.093 I	0.047 U	0.18 U	0.12 U	0.090 U	0.042 U
	7/12/18	4,400	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/11/18	1,200	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/11/19	1,870	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/18/19	1,540	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/16/19	1,600	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/16/20	2,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/8/21	240 U	1.2 U	0.59 U	0.62 U	0.23 U	0.075 U	0.083 U	0.064 U	0.22 U	0.23 U	0.80 U	0.21 U	0.067 U	0.046 U	0.046 U	0.077 U	0.063 U	0.071 U	0.046 U
MW-7	2/9/99	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP
	6/16/03	NS	140	100	130	9.4	1 U	1 U	1 U	1 U	10	16	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	11/7/03	26,000	14	15	14	1.9	1 U	1 U	1 U	1 U	2.8	3.0	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/18/04	NS	13	7.4	7.8	1.2	1 U	1 U	1 U	1 U	1.6	1.5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/18/04	NS	66	34	46	1.7	1 U	1 U	1 U	1 U	2.4	3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/26/04	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/27/05	NS	19	15	14	2	1 U	1 U	1 U	1 U	2	2.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/28/05	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	3/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	1/4/07	NS	7.5	8.8	7.2	1.2	1 U	1 U	1 U	1 U	1.1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	4/17/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	7/17/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	10/21/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/3/09	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/4/09	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/5/09	NS	0.463	0.527	0.716	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.260	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U

Facility ID#: 118839176

Facility Name: Combs Oil Bulk Plant

Sam	ple	TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-7	10/28/09	NS	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.098 U	0.098 U	0.098 U	0.160 U	0.160 U	0.128 U	0.067 U	0.067 U	0.067 U	0.052 U	0.054 U	0.054 U	0.054 U
	2/23/10	16,500	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/4/10	428 I	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
by others	9/10/10	12,100	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/8/11	28,367	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/3/12	30,299	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/3/12	12,972	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/20/12	12,390	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/26/12	11,486	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/25/13	11,214	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/23/13	12,748	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/20/13	19,982	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/10/14	27,386	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/19/14	15,100	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/19/15	17,800	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/23/15	16,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/16/16	16,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/21/16	7,900	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/19/17	24,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-7R	4/12/18	8,000	0.23	1.2	0.80	0.97	0.16 U	0.13 U	0.18 U	0.14 U	0.62	0.62	0.44	0.14 U	0.046 U	0.047 U	0.18 U	0.12 U	0.090 U	0.042 U
	7/12/18	3,700	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/11/18	3,200	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/11/19	3,510	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/18/19	3,380	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/16/19	4,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/16/20	5,300	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/18/20	6,800	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/8/21	3,000	1.2 U	0.59 U	0.62 U	0.23 U	0.075 U	0.10 I	0.064 U	0.22 U	0.23 U	0.80 U	0.21 U	0.067 U	0.046 U	0.046 U	0.077 U	0.063 U	0.071 U	0.046 U
MW-8	2/9/99	NS	32.0	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	3/14/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	6/10/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/9/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/11/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	10	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	6/16/03	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	11/7/03	720 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/23/10	169 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

Facility ID#: 118839176

Facility Name: Combs Oil Bulk Plant

Sam	nple	TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-8	6/23/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
by others	9/10/10	934.00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/20/12	NS	0.220 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/12/18	570 U	0.18 U	0.19 U	0.18 U	0.15 U	0.16 U	0.13 U	0.18 U	0.14 U	0.15 U	0.15 U	0.13 U	0.14 U	0.046 U	0.047 U	0.18 U	0.12 U	0.090 U	0.057 I
	7/12/18	2,300	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/11/18	1,100	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/11/19	203	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/18/19	1,780	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/16/19	570 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/16/20	570 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/8/21	800 I	1.2 U	0.59 U	0.62 U	0.23 U	0.075 U	0.083 U	0.064 U	0.22 U	0.23 U	0.80 U	0.21 U	0.067 U	0.046 U	0.046 U	0.077 U	0.063 U	0.071 U	0.046 U
MW-10	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	NS	NS	NS	5 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	NS
MW-11	5/11/99	NS	1.3	1 U	1 U	1 U	1 U	NS	NS	NS	1 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	NS
MW-11R	6/16/03	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/6/03	2,100	4.7	4	5.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
by others	9/10/10	235	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-12	2/9/99	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP
MW-12R	3/14/02	NS	24	11	15	1 U	1 U	1 U	1 U	1 U	1.2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	6/10/02	NS	82	43	57	1.5	1 U	1 U	1 U	1 U	2	1.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/9/02	NS	3.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/11/02	NS	36	17	22	1.2	1 U	1 U	1 U	1 U	1.1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	11/6/03	3,100	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/18/04	NS	1.1	1.5	1.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/18/04	NS	2	1.8	2.3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/26/04	NS	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/28/05	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/28/05	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	3/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	1/4/07	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	7/8/21	240 U	1.2 U	0.59 U	0.62 U	0.23 U	0.075 U	0.083 U	0.064 U	0.22 U	0.23 U	0.80 U	0.21 U	0.067 U	0.046 U	0.046 U	0.077 U	0.063 U	0.071 U	0.046 U
MW-13	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	1/31/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-14	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-15	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

Facility ID#: 118839176

Facility Name: Combs Oil Bulk Plant

Sam	ple	TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-16	2/9/99	NS	7.0	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-17	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-18	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	NS	NS	NS	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	4/3/12	222	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-19	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	4/3/12	426 I	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-20	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	NS	NS	NS	5 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	NS
MW-21	2/9/99	NS	10.0	1 U	1 U	3 U	3 U	NS	NS	NS	5 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	NS
MW-21R	6/16/03	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1 U
	11/6/03	2,500.00	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/18/04	NS	2	2.2	1.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/18/04	NS	2.8	2.4	3.1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/26/04	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/28/05	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/28/05	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	3/28/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	1/4/07	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	4/18/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/17/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	10/21/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/3/09	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/4/09	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/5/09	NS	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U
	10/28/09	NS	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.098 U	0.098 U	0.098 U	0.160 U	0.160 U	0.128 U	0.067 U	0.067 U	0.067 U	0.052 U	0.054 U	0.054 U	0.05 U
by others	9/10/10	115.00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-22	5/11/99	NS	FP	FP	FP	FP	FP	NS	NS	NS	FP	FP	FP	FP	NS	NS	FP	FP	NS	NS
MW-22R	3/14/02	NS	52	21	32	1 U	1 U	1 U	1 U	1 U	1.4	1.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	6/10/02	NS	48	72	1 U	2.5	1.7	1 U	1 U	1 U	2.8	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/9/02	NS	35	17	28	1 U	1 U	1 U	1 U	1 U	1.2	1.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/11/02	NS	83	32	51	1.3	1 U	1 U	1 U	1 U	1.7	25	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	11/7/03	5,000	35	10	26	1 U	1 U	1 U	1 U	1 U	1	1.3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/18/04	NS	8.5	8.8	14	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/18/04	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/26/04	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/27/05	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/28/05	NS	2.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	3/28/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

Facility ID#: 118839176

Facility Name: Combs Oil Bulk Plant

Sam	ple	TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-22R	1/4/07	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/10/07	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/11/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/17/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	NS
	7/17/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	NS
	10/21/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	NS
	2/3/09	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	NS
	5/4/09	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	NS
	8/5/09	NS	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.001 U	0.001 U	0.010	0.231	0.001 U	0.001 U	0.011	0.002 U	0.002 U	0.002 U
	10/28/09	NS	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.098 U	0.098 U	0.098 U	0.160 U	0.160 U	0.128 U	0.067 U	0.160 U	0.160 U	0.052 U	0.054 U	0.054 U	0.054 U
by others	9/10/10	46 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-23	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-25	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-26	5/11/99	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-26R	8/20/12	NS	1.18	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-27	5/11/99	NS	1.7	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-28	11/7/03	4,600.00	14	12	13	2	1 U	1 U	1 U	1 U	2.7	4.9	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/18/04	NS	29	21	26	2.2	1 U	NS	NS	NS	3.2	5.8	1 U	1 U	NS	NS	1 U	1 U	1 U	1 U
by others	9/10/10	11,200	0.127	0.126	0.134	0.320	0.025 U	0.025 U	0.025 U	0.025 U	0.082	0.113	0.072	0.015 U	0.015 U	0.015 U	0.015 U	0.025 U	0.025 U	0.025 U
	11/8/11	7,546	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.098 U	0.098 U	0.098 U	0.160 U	0.047 U	0.128 U	0.067 U	0.067 U	0.067 U	0.052 U	0.054 U	0.054 U	0.054 U
	1/3/12	9,396	0.173 U	0.153 U	0.160 U	0.253	0.098 U	0.098 U	0.098 U	0.098 U	0.160 U	0.284	0.336	0.067 U	0.067 U	0.067 U	0.052 U	0.054 U	0.054 U	0.054 U
	4/3/12	3,800	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.098 U	0.098 U	0.098 U	0.160 U	0.138 I	0.128 U	0.067 U	0.067 U	0.067 U	0.052 U	0.054 U	0.054 U	0.054 U
	8/20/12	5,326	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/26/12	15,372	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/25/13	8,981	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/23/13	1,006	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/20/13	28,520	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/10/14	17,450	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/19/14	10,100	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/19/15	5,840	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/23/15	12,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/16/16	9,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/21/16	14,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/19/17	5,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-28R	4/12/18	15,000	0.18 U	0.19 U	0.21	0.29	0.16 U	0.13 U	0.18 U	0.14 U	0.15 U	0.15 U	0.28	0.14 U	0.046 U	0.047 U	0.18 U	0.12 U	0.090 U	0.042 U
	7/12/18	8,600	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/11/18	26,000 J4	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/11/19	8,220	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

Facility ID#: 118839176

Facility Name: Combs Oil Bulk Plant

Sam	ple	TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-28R	9/18/19	24,900	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/16/19	15,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/16/20	8,200	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/18/20	2,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/8/21	4,800	1.2 U	0.59 U	0.62 U	0.23 U	0.075 U	0.083 U	0.064 U	0.22 U	0.23 U	0.80 U	0.21 U	0.067 U	0.046 U	0.046 U	0.077 U	0.063 U	0.071 U	0.046 U
MW-29	11/7/03	30,000.00	54	20	36	1.3	1 U	1 U	1 U	1 U	1.9	3.2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	1/31/06	NS	5.5	1.6	1.9	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/23/10	959	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
by others	9/10/10	2,350	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/5/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/8/11	976	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.098 U	0.098 U	0.098 U	0.160 U	0.047 U	0.128 U	0.067 U	0.067 U	0.067 U	0.052 U	0.054 U	0.054 U	0.054 U
	4/3/12	216 I	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.098 U	0.098 U	0.098 U	0.160 U	0.047 U	0.128 U	0.067 U	0.067 U	0.067 U	0.052 U	0.054 U	0.054 U	0.054 U
MW-30	11/6/03	5,600	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	1 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	1 U
	2/18/04	NS	1 U	2.2	3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/18/04	NS	7.4	4.2	6.5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/26/04	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/28/05	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/28/05	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	3/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	1/4/07	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	4/17/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	7/17/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	10/21/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/3/09	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/4/09	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/5/09	NS	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.001 U	0.001 U	0.001 U	0.010 U	0.010 U	0.010 U	0.001 U	0.002 U	0.002 U	0.002 U
	10/28/09	NS	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.098 U	0.098 U	0.098 U	0.160 U	0.160 U	0.128 U	0.067 U	0.067 U	0.067 U	0.052 U	0.054 U	0.054 U	0.054 U
	2/23/10	509 I	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
by others	9/10/10	151.00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

Facility ID#: 118839176

Facility Name: Combs Oil Bulk Plant

Sam	nple	TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-31	11/6/03	650 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-32	1/31/06	260	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-33	1/31/06	300	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/23/10	169 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/3/12	186 I	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-34	8/20/12	651	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.047 U	0.047 U	0.047 U	0.160 U	0.047 U	0.128 U	0.067 U	0.047 U	0.047 U	0.052 U	0.054 U	0.054 U	0.054 U
	11/26/12	167 I	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.047 U	0.047 U	0.047 U	0.160 U	0.047 U	0.128 U	0.067 U	0.047 U	0.047 U	0.052 U	0.054 U	0.054 U	0.054 U
	2/25/13	183 I	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/23/13	568	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
HRL	3/14/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	6/10/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/9/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/11/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
GC1	ΓLs	5,000	14	28	28	20	210	2,100	210	280	280	210	210	0.2**	0.05 ^ª	0.05 ^ª	0.5	4.8	0.005 ^a	0.05 ^a
NAD	DCs	50,000	140	280	280	200	2,100	21,000	2,100	2,800	2,800	2,100	2,100	20	5	5	50	480	0.5	5

Notes: FP = Well contained free product

NS = Not Sampled.

GCTLs = Groundwater Cleanup Target Levels specified in Table I of Chapter 62-777, F.A.C.

NADCs = Natural Attenuation Default Source Concentrations specified in Table V of Chapter 62-777, F.A.C.

** = As provided in Chapter 62-550, F.A.C.

^a = See the October 12, 2004 "Guidance for the Selection of Analytical Methods and for the Evaluation of Practical Quantitation Limits" to determine how to evaluate data when the CTL is lower than the PQL.

U = Constituent was not detected to the level indicated; I = concentration is between the method detection limit and the practival quantitative limit.

TABLE 3: GROUNDWATER ELEVATION TABLE

All Measurements = Feet

Facility Name: Combs Bulk Plant/Homer's Truck Stop Facility ID#: 118839176 & 118839434

No Data = Blank MDM Job# 20815 WELL NO. MW-5 MW-6 MW-7 MW-8 MW-9 **MW-10** DIAMETER 4 inch 4 inch 4 inch 4 inch 2 inch 2 inch WELL DEPTH 11 ft. 11 ft. 11 ft. 11 ft. 11 ft. 11 ft. SCREEN INTERVAL 1.5 to 11 1.5 to 11 1.5 to 11 1.5 to 11 2 to 11 2 to 11 TOC ELEVATION 99.63 99.51 99.90 99.53 99.36 ELEV DTW FP ELEV | DTW | FP | ELEV | DTW | FP DATE 10/15/2001 96.06 3.84 0.5 in. 3.41 96.32 3.35 95.82 3.98 1 in. 96.12 3/14/2002 92.56 7.11 7.31 0.5 in. 92.49 92.45 7.45 92.50 7.03 92.61 6.75 6/10/2002 7.82 7.85 1/4 in. 91.85 91.95 91.78 8.12 91.83 7.70 91.68 7.68 9/9/2002 94.91 4.76 94.90 4.90 1/4 in. 94.71 5.19 94.98 4.55 95.01 4.35 4.91 94.65 4.71 12/11/2002 94.76 94.77 5.03 0.5 in. 94.16 5.74 94.66 4.87 92.28 7.25 92.40 7.27 5/15/2003 92.81 6.99 92.29 7.61 92.23 7.13 1/8 in. 6/16/2003 93.57 6.10 93.30 6.50 93.48 6.42 93.43 6.10 93.49 5.87 11/6/2003 94.02 4.78 95.05 4.85 94.98 4.55 4.69 95.40 3.96 2/18/2004 93.63 6.27 93.00 5.80 93.57 5.96 5/18/2004 92.75 6.05 92.00 7.90 92.03 7.50 8/26/2004 95.25 3.55 95.80 4.10 95.80 3.73 9/27/2005 94.64 4.16 94.95 4.95 94.99 4.54 12/28/2005 93.82 4.98 94.40 5.50 94.29 5.24 3/29/2006 92.12 6.68 92.81 7.09 92.71 6.82 9/29/2006 95.16 3.64 95.66 4.24 95.66 3.87 92.88 1/4/2007 93.50 6.30 93.05 6.85 6.65 8/10/2007 91.90 8.00 92.08 7.45 1/11/2008 92.78 6.73 91.81 8.09 91.78 7.75 4/17/2008 91.65 8.15 91.36 8.54 8.29 4/18/2008 91.24 94.63 4.88 93.40 6.50 94.59 4.94 7/17/2008 10/21/2008 95.95 3.85 94.96 4.94 95.57 3.96 7.04 2/3/2009 92.86 92.87 93.26 6.54 6.66 5/4/2009 90.98 8.82 90.70 9.20 90.58 8.95 8/5/2009 96.65 3.15 96.17 3.73 96.16 3.37 10/28/2009 94.98 4.82 94.60 5.30 94.53 5.00 2/23/2010 94.10 5.70 93.79 93.72 5.81 6.11 3/4/2010 93.80 6.10 6/23/2010 94.33 5.20 11/8/2011 94.86 4.81 95.12 4.68 94.74 5.16 94.73 4.80 93.07 1/3/2012 6.60 93.30 6.50 93.00 6.90 92.93 6.60 4/3/2012 91.07 8.60 91.35 8.45 91.15 8.75 91.03 8.50 8/20/2012 91.78 7.85 91.87 7.64 91.86 8.04 91.83 7.70 11/26/2012 93.32 6.31 93.29 6.61 93.24 6.29 92.01 2/25/2013 91.98 7.65 7.50 92.00 7.90 91.98 7.55 91.90 5/23/2013 7.73 92.28 7.23 92.35 7.55 92.11 7.42 11/20/2013 94.18 5.45 94.20 5.31 94.12 5.78 94.10 5.43 7.43 92.21 7.69 7.30 6/10/2014 92.20 92.28 7.23 92.23 11/19/2014 93.48 6.15 93.51 6.00 93.50 6.40 93.45 6.08 5/19/2015 92.53 92.56 6.95 92.60 7.30 92.61 6.92 7.10 12/23/2015 94.49 5.14 94.53 4.98 94.44 5.46 94.38 5.15 6/16/2016 96.03 3.60 96.07 3.44 95.98 3.92 95.89 3.64 12/21/2016 93.14 6.49 93.13 6.38 93.10 6.80 93.04 6.49 6/19/2017 96.53 3.10 96.61 2.90 96.40 3.50 96.43 3.10 4/12/2018 92.56 7.07 92.57 6.94 92.48 7.05 7/12/2018 96.00 3.63 96.05 3.46 95.89 3.64 10/11/2018 95.45 4.18 95.51 4.00 95.43 4.10 1/11/2019 93.20 6.43 93.22 6.29 93.16 6.37 9/18/2019 94.96 4.67 95.03 4.48 93.85 5.68 12/16/2019 93.17 6.46 93.16 93.08 6.45 6.35 3/16/2020 92.04 7.59 92.04 7.47 92.01 7.52 7/8/2021 93.11 6.52 93.15 6.36 93.23 6.30

WELL NO.	MW-11R	MW-12R	MW-13	MW-14	MW-15	MW-16
DIAMETER	2 inch	2 inch	4 inch	4 inch	4 inch	4 inch
WELL DEPTH	10.5 ft	12 ft.	14 ft.	14 ft.	14 ft.	14 ft.
SCREEN INTERVAL	2 to 10.5	2 to 12	2 to 14	2 to 14	2 to 14	2 to 14
TOC ELEVATION	99.46	99.65	99.49		99.86	99.12

DATE	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP
10/15/2001	96.41	3.05		96.45	3.01													
3/14/2002	92.75	6.71		92.62	6.84		92.67	6.82								92.67	6.45	
6/10/2002	91.76	7.70		91.76	7.70		91.94	7.55								91.44	7.68	
9/9/2002	95.20	4.26		94.96	4.50		95.20	4.29								95.31	3.81	
12/11/2002	94.82	4.64		94.86	4.60		95.59	3.90								95.01	4.11	
5/15/2003	92.33	7.13		can	not loca	ate	92.77	6.72										
6/16/2003	93.64	5.82		can	not loca	ate	93.67	5.82								93.60	5.52	
11/6/2003	95.41	4.05		95.37	4.28		95.98	3.51										
2/18/2004	93.76	5.70		93.74	5.91													
5/18/2004	92.26	7.20		92.23	7.42													
8/26/2004	96.04	3.42		96.00	3.65													
9/27/2005				95.62	4.03													
12/28/2005				94.77	4.88													
1/31/2006							93.67	5.82										
3/29/2006	92.91	6.55		93.05	6.60													
9/29/2006	96.04	3.42		96.13	3.52													
1/5/2007	93.16	6.30		93.33	6.32													
1/11/2008	91.90	7.56		92.10	7.55													
4/18/2008	91.51	7.95		91.80	7.85													
7/17/2008	94.78	4.68																
10/21/2008	95.82	3.64																
2/3/2009	93.06	6.40																
5/4/2009	90.81	8.65																
8/5/2009	96.48	2.98																
10/28/2009	94.84	4.62																
7/8/2021				93.38	6.27													

TABLE 3: GROUNDWATER ELEVATION TABLE

Facility Name: Combs Bulk Plant/Homer's Truck Stop Facility ID#: 118839176 & 118839434

All Measurements = Feet No Data = Blank

					NAVA/ 40			MANA/ 40			MMA/ 00			1111 041				
WELL NO.		MW-17			MW-18			MW-19			MW-20		ľ	MW-21		ſ	MW-22F	۲
DIAMETER		4 inch			4 inch			4 inch			4 inch			4 inch			4 inch	
WELL DEPTH		14 ft.			15 ft.			30 ft.			30 ft.			12 ft.			14 ft	
SCREEN INTERVAL	1	.5 to 11			1.5 to 1	1		25 to 30	<u>۱</u>		25 to 30	<u>۱</u>		2 to 12)		4 to 14 f	4
						I)		25 10 30)						ι
TOC ELEVATION		99.9			98.84			99.75						99.49			99.32	
DATE	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP
10/15/2001	96.09	3.81											96.45	3.04		96.41	2.43	
				00.44	0.4													
3/14/2002	92.64	7.26		92.44	6.4								92.75	6.74		92.58	6.26	
6/10/2002	91.95	7.95											91.79	7.7		91.66	7.18	
9/9/2002	95.27	4.63		95.01	3.83								95.18	4.31		95.21	3.63	
12/11/2002	94.77	5.13		94.54	4.3		94.57	5.18					94.86	4.63		94.79		
	94.77	5.15																
5/15/2003				92.26	6.58		92.3	7.45					92.31	7.18		ca	nnot loca	ate
6/16/2003	93.56	6.34		93.36	5.48		93.4	6.35					93.69	5.8		ca	nnot loc	ate
11/6/2003				94.97	3.87								95.41	4.08		95.36	4.05	
				04.07	0.07													
2/18/2004													93.79	5.7		93.76		
5/18/2004													92.34	7.15		92.23	7.18	
8/26/2004													96.11	3.38		96.1	3.31	
9/27/2005													95.47	4.02		95.46	3.95	
12/28/2005													94.67	4.82		94.61	4.80	
3/29/2006													92.93	6.56		92.78	6.63	
9/29/2006				I			I			T			95.99	3.50		95.95	3.46	
1/4/2007				1	1	1	1	1		t			93.29	6.20	1	93.23	6.18	
								<u> </u>		 			33.29	0.20				
8/10/2007						L	I	l		I					1	92.21	7.2	
1/11/2008							1	_		1				DRY		91.7	7.71	
4/17/2008																91.21	8.2	
4/18/2008					1	1	1	1		1			91.48	8.01	1			
								l		 						01.00	4	
7/17/2008						L		L					94.75	4.74		94.86	4.55	
10/21/2008										1			95.8	3.69		95.61	3.8	
2/3/2009							1						93.03	6.46		92.79	6.62	
				1	1	1	1	1		ł					1			
5/4/2009				l		I		l		I			90.74	8.75		90.53	8.88	
8/5/2009													96.44	3.05		96.39	3.02	
10/28/2009													94.84	4.65		94.66	4.75	
4/3/2012				90.96	7.88		90.95	8.8		1	-		2		1	2		
				30.90	1.00	 	30.95	0.0		I			l			01.00	7.40	
8/20/2012						L		L		L					<u> </u>	91.90	7.42	
	-									-			•					
WELL NO.		MW-23		1	MW-24		1	MW-25		N/\\\/	-26/MW	126D	1	MW-27	7	1	MW-28	
						•						201						
DIAMETER		4 inch			4 inch			4 inch			4 inch			4 inch			2 inch	
WELL DEPTH		14 ft.			14 ft.			14 ft.			30 ft.			14 ft.			12 ft.	
		14 IL.			1 1 1 1 1 1			1410.			00 11.							
				1					4)					2 to 12	
SCREEN INTERVAL		2 to 14		1	.5 to 14			1.5 to 14	4		25 to 30)		4 to 14			2 to 12	
				1					4)					2 to 12 99.74	
SCREEN INTERVAL TOC ELEVATION		2 to 14			.5 to 14			1.5 to 14 100.6			25 to 30 99.68			4 to 14			99.74	
SCREEN INTERVAL TOC ELEVATION DATE		2 to 14	FP	1 ELEV	.5 to 14		ELEV	1.5 to 14 100.6 DTW			25 to 30 99.68			4 to 14		ELEV	99.74	
SCREEN INTERVAL TOC ELEVATION		2 to 14	FP		.5 to 14			1.5 to 14 100.6 DTW			25 to 30 99.68			4 to 14		ELEV	99.74	
SCREEN INTERVAL TOC ELEVATION DATE 12/11/2002		2 to 14	FP		.5 to 14		ELEV 95.22	1.5 to 14 100.6 DTW 5.34			25 to 30 99.68			4 to 14			99.74	
SCREEN INTERVAL TOC ELEVATION DATE 12/11/2002 5/15/2003		2 to 14	FP		.5 to 14		ELEV 95.22 92.91	1.5 to 14 100.6 DTW 5.34 7.65	FP		25 to 30 99.68			4 to 14		ELEV	99.74	
SCREEN INTERVAL TOC ELEVATION 12/11/2002 5/15/2003 6/16/2003		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed		25 to 30 99.68			4 to 14			99.74 DTW	
SCREEN INTERVAL TOC ELEVATION DATE 12/11/2002 5/15/2003 6/16/2003 11/6/2003		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65	FP ed		25 to 30 99.68			4 to 14		ELEV 95.35	99.74 DTW 4.37	
SCREEN INTERVAL TOC ELEVATION DATE 12/11/2002 5/15/2003 6/16/2003 11/6/2003		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed		25 to 30 99.68			4 to 14			99.74 DTW 4.37	
SCREEN INTERVAL TOC ELEVATION DATE 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed		25 to 30 99.68			4 to 14		95.35 93.6	99.74 DTW 4.37 6.12	
SCREEN INTERVAL TOC ELEVATION DATE 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed		25 to 30 99.68			4 to 14		95.35 93.6 92.2	99.74 DTW 4.37 6.12 7.52	
SCREEN INTERVAL TOC ELEVATION DATE 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed		25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62	99.74 DTW 4.37 6.12 7.52 4.1	
SCREEN INTERVAL TOC ELEVATION DATE 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed		25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48	99.74 DTW 4.37 6.12 7.52 4.1 5.24	
SCREEN INTERVAL TOC ELEVATION DATE 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed		25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62	99.74 DTW 4.37 6.12 7.52 4.1	
SCREEN INTERVAL TOC ELEVATION DATE 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005 12/28/2005		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed		25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48 94.49	99.74 DTW 4.37 6.12 7.52 4.1 5.24 5.23	
SCREEN INTERVAL TOC ELEVATION DATE 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005 12/28/2005 3/29/2006		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed		25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48 94.49 92.82	99.74 DTW 4.37 6.12 7.52 4.1 5.24 5.23 6.90	
SCREEN INTERVAL TOC ELEVATION DATE 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005 12/28/2005 3/29/2006 9/29/2006		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed		25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48 94.49 92.82 95.72	99.74 DTW 4.37 6.12 7.52 4.1 5.24 5.23 6.90 4.00	
SCREEN INTERVAL TOC ELEVATION DATE 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005 12/28/2005 3/29/2006 9/29/2006 1/5/2007		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed		25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48 94.49 92.82 95.72 92.94	99.74 DTW 4.37 6.12 7.52 4.1 5.24 5.23 6.90 4.00 6.78	
SCREEN INTERVAL TOC ELEVATION DATE 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005 12/28/2005 3/29/2006 9/29/2006		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed		25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48 94.49 92.82 95.72	99.74 DTW 4.37 6.12 7.52 4.1 5.24 5.23 6.90 4.00	
SCREEN INTERVAL TOC ELEVATION 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005 12/28/2005 3/29/2006 9/29/2006 1/5/2007 8/10/2007		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed		25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48 94.49 92.82 95.72 92.94 91.81	99.74 DTW 4.37 6.12 7.52 4.1 5.24 5.23 6.90 4.00 6.78 7.91	
SCREEN INTERVAL TOC ELEVATION 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005 12/28/2005 3/29/2006 9/29/2006 1/5/2007 8/10/2007 1/11/2008		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed		25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48 94.49 92.82 95.72 92.94 91.81 91.76	99.74 DTW 4.37 6.12 7.52 4.1 5.24 5.23 6.90 4.00 6.78 7.91 7.96	
SCREEN INTERVAL TOC ELEVATION 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005 12/28/2005 3/29/2006 9/29/2006 1/5/2007 8/10/2007 1/11/2008 4/18/2008		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed		25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48 94.49 92.82 95.72 92.94 91.81 91.76 91.18	99.74 DTW 4.37 6.12 7.52 4.1 5.24 5.23 6.90 4.00 6.78 7.91 7.96 8.54	
SCREEN INTERVAL TOC ELEVATION 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005 12/28/2005 3/29/2006 9/29/2006 1/5/2007 8/10/2007 1/11/2008 4/18/2008 7/17/2008		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed		25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48 94.49 92.82 95.72 92.94 91.81 91.76 91.18 92.67	99.74 DTW 4.37 6.12 7.52 4.1 5.24 5.23 6.90 4.00 6.78 7.91 7.96 8.54 7.05	
SCREEN INTERVAL TOC ELEVATION 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005 12/28/2005 3/29/2006 9/29/2006 1/5/2007 8/10/2007 1/11/2008 4/18/2008		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed		25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48 94.49 92.82 95.72 92.94 91.81 91.76 91.18	99.74 DTW 4.37 6.12 7.52 4.1 5.24 5.23 6.90 4.00 6.78 7.91 7.96 8.54	
SCREEN INTERVAL TOC ELEVATION 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005 12/28/2005 3/29/2006 9/29/2006 1/5/2007 8/10/2007 1/11/2008 4/18/2008 7/17/2008		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed		25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48 94.49 92.82 95.72 92.94 91.81 91.76 91.18 92.67 93.81	99.74 DTW 4.37 6.12 7.52 4.1 5.24 5.23 6.90 4.00 6.78 7.91 7.96 8.54 7.05 5.91	
SCREEN INTERVAL TOC ELEVATION 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005 12/28/2005 3/29/2006 9/29/2006 1/5/2007 8/10/2007 1/11/2008 4/18/2008 7/17/2008 10/21/2008		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed		25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48 94.49 92.82 95.72 92.94 91.81 91.76 91.18 92.67 93.81 92.84	99.74 DTW 4.37 6.12 7.52 4.1 5.24 5.23 6.90 4.00 6.78 7.91 7.96 8.54 7.05 5.91 6.88	
SCREEN INTERVAL TOC ELEVATION 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005 12/28/2005 3/29/2006 9/29/2006 1/5/2007 8/10/2007 1/11/2008 4/18/2008 7/17/2008 10/21/2008 2/3/2009 5/4/2009		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed		25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48 94.49 92.82 95.72 92.94 91.81 91.76 91.18 92.67 93.81 92.84 90.62	99.74 DTW 4.37 6.12 7.52 4.1 5.24 5.23 6.90 4.00 6.78 7.91 7.96 8.54 7.05 5.91 6.88 9.1	
SCREEN INTERVAL TOC ELEVATION 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005 12/28/2005 3/29/2006 9/29/2006 1/5/2007 8/10/2007 1/11/2008 4/18/2008 7/17/2008 10/21/2008 2/3/2009 5/4/2009 8/5/2009		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed		25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48 94.49 92.82 95.72 92.94 91.81 91.76 91.18 92.67 93.81 92.84	99.74 DTW 4.37 6.12 7.52 4.1 5.24 5.23 6.90 4.00 6.78 7.91 7.96 8.54 7.05 5.91 6.88 9.1 3.68	
SCREEN INTERVAL TOC ELEVATION 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005 12/28/2005 3/29/2006 9/29/2006 1/5/2007 8/10/2007 1/11/2008 4/18/2008 7/17/2008 10/21/2008 2/3/2009 5/4/2009		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed		25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48 94.49 92.82 95.72 92.94 91.81 91.76 91.18 92.67 93.81 92.84 90.62	99.74 DTW 4.37 6.12 7.52 4.1 5.24 5.23 6.90 4.00 6.78 7.91 7.96 8.54 7.05 5.91 6.88 9.1	
SCREEN INTERVAL TOC ELEVATION 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005 12/28/2005 3/29/2006 9/29/2006 1/5/2007 8/10/2007 1/11/2008 4/18/2008 7/17/2008 10/21/2008 2/3/2009 5/4/2009 8/5/2009 10/28/2009		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed		25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48 94.49 92.82 95.72 92.94 91.81 91.76 91.18 92.67 93.81 92.84 90.62 96.04 94.6	99.74 DTW 4.37 6.12 7.52 4.1 5.24 5.23 6.90 4.00 6.78 7.91 7.96 8.54 7.05 5.91 6.88 9.1 3.68 5.12	
SCREEN INTERVAL TOC ELEVATION DATE 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005 12/28/2005 3/29/2006 9/29/2006 1/5/2007 8/10/2007 1/11/2008 4/18/2008 7/17/2008 10/21/2008 2/3/2009 5/4/2009 8/5/2009 10/28/2009 11/8/2011		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed		25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48 94.49 92.82 95.72 92.94 91.81 91.76 91.18 92.67 93.81 92.84 90.62 96.04 94.6 94.72	99.74 DTW 4.37 6.12 7.52 4.1 5.24 5.23 6.90 4.00 6.78 7.91 7.96 8.54 7.05 5.91 6.88 9.1 3.68 5.12 5.00	
SCREEN INTERVAL TOC ELEVATION DATE 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005 12/28/2005 3/29/2006 9/29/2006 1/5/2007 8/10/2007 1/11/2008 4/18/2008 7/17/2008 10/21/2008 2/3/2009 5/4/2009 8/5/2009 10/28/2009 11/8/2011 1/3/2012		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed		25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48 94.49 92.82 95.72 92.94 91.81 91.76 91.18 92.67 93.81 92.84 90.62 96.04 94.6 94.72 93.02	99.74 DTW 4.37 6.12 7.52 4.1 5.24 5.23 6.90 4.00 6.78 7.91 7.96 8.54 7.05 5.91 6.88 9.1 3.68 5.12 5.00 6.70	
SCREEN INTERVAL TOC ELEVATION DATE 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005 12/28/2005 3/29/2006 9/29/2006 1/5/2007 8/10/2007 1/11/2008 4/18/2008 7/17/2008 10/21/2008 2/3/2009 5/4/2009 8/5/2009 10/28/2009 10/28/2009 11/8/2011 1/3/2012 4/3/2012		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed		25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48 94.49 92.82 95.72 92.94 91.81 91.76 91.18 92.67 93.81 92.84 90.62 96.04 94.6 94.72	99.74 DTW 4.37 6.12 7.52 4.1 5.24 5.23 6.90 4.00 6.78 7.91 7.96 8.54 7.05 5.91 6.88 9.1 3.68 5.12 5.00 6.70 8.65	
SCREEN INTERVAL TOC ELEVATION DATE 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005 12/28/2005 3/29/2006 9/29/2006 1/5/2007 8/10/2007 1/11/2008 4/18/2008 7/17/2008 10/21/2008 2/3/2009 5/4/2009 8/5/2009 10/28/2009 10/28/2009 11/8/2011 1/3/2012 4/3/2012		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed		25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48 94.49 92.82 95.72 92.94 91.81 91.76 91.18 92.67 93.81 92.84 90.62 96.04 94.6 94.72 93.02	99.74 DTW 4.37 6.12 7.52 4.1 5.24 5.23 6.90 4.00 6.78 7.91 7.96 8.54 7.05 5.91 6.88 9.1 3.68 5.12 5.00 6.70 8.65	
SCREEN INTERVAL TOC ELEVATION DATE 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005 12/28/2005 3/29/2006 9/29/2006 1/5/2007 8/10/2007 1/11/2008 4/18/2008 7/17/2008 10/21/2008 2/3/2009 5/4/2009 8/5/2009 10/28/2009 11/8/2011 1/3/2012 4/3/2012 8/20/2012		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed	91.75	25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48 94.49 92.82 95.72 92.94 91.81 91.76 91.18 92.67 93.81 92.84 90.62 96.04 94.6 94.62 94.62 94.07 93.02 91.07 91.90	99.74 DTW 4.37 6.12 7.52 4.1 5.24 5.23 6.90 4.00 6.78 7.91 7.96 8.54 7.05 5.91 6.88 9.1 3.68 5.12 5.00 6.70 8.65 7.84	
SCREEN INTERVAL TOC ELEVATION DATE 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005 12/28/2005 3/29/2006 9/29/2006 1/5/2007 8/10/2007 1/11/2008 4/18/2008 7/17/2008 10/21/2008 2/3/2009 5/4/2009 8/5/2009 10/28/2009 11/8/2011 1/3/2012 4/3/2012 8/20/2012 11/26/2012		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed		25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48 94.49 92.82 95.72 92.94 91.81 91.76 91.18 92.67 93.81 92.84 90.62 96.04 94.6 94.72 93.02 91.07 91.90 93.34	99.74 DTW 4.37 6.12 7.52 4.1 5.24 5.23 6.90 4.00 6.78 7.91 7.96 8.54 7.05 5.91 6.88 9.1 3.68 5.12 5.00 6.70 8.65 7.84 6.40	
SCREEN INTERVAL TOC ELEVATION DATE 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005 12/28/2005 3/29/2006 9/29/2006 1/5/2007 8/10/2007 1/11/2008 4/18/2008 7/17/2008 10/21/2008 2/3/2009 5/4/2009 5/4/2009 8/5/2009 10/28/2009 11/8/2011 1/3/2012 4/3/2012 8/20/2012 11/26/2012 2/25/2013		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed	91.75	25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48 94.49 92.82 95.72 92.94 91.81 91.76 91.18 92.67 93.81 92.84 90.62 96.04 94.6 94.62 94.62 94.62 94.62 94.72 93.02 91.07 91.90 93.34 92.04	99.74 DTW 4.37 6.12 7.52 4.1 5.24 5.23 6.90 4.00 6.78 7.91 7.96 8.54 7.05 5.91 6.88 9.1 3.68 5.12 5.00 6.70 8.65 7.84 6.40 7.7	
SCREEN INTERVAL TOC ELEVATION DATE 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005 12/28/2005 3/29/2006 9/29/2006 1/5/2007 8/10/2007 1/11/2008 4/18/2008 7/17/2008 10/21/2008 2/3/2009 5/4/2009 8/5/2009 10/28/2009 11/8/2011 1/3/2012 4/3/2012 8/20/2012 11/26/2012		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed	91.75	25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48 94.49 92.82 95.72 92.94 91.81 91.76 91.18 92.67 93.81 92.84 90.62 96.04 94.6 94.72 93.02 91.07 91.90 93.34	99.74 DTW 4.37 6.12 7.52 4.1 5.24 5.23 6.90 4.00 6.78 7.91 7.96 8.54 7.05 5.91 6.88 9.1 3.68 5.12 5.00 6.70 8.65 7.84 6.40	
SCREEN INTERVAL TOC ELEVATION DATE 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005 12/28/2005 3/29/2006 9/29/2006 1/5/2007 8/10/2007 1/11/2008 4/18/2008 7/17/2008 10/21/2008 2/3/2009 5/4/2009 5/4/2009 8/5/2009 10/28/2009 10/28/2009 11/8/2011 1/3/2012 4/3/2012 8/20/2012 11/26/2012 2/25/2013 5/23/2013		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed	91.75	25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48 94.49 92.82 95.72 92.94 91.81 91.76 91.18 92.67 93.81 92.84 90.62 96.04 94.6 94.6 94.72 93.02 91.07 91.90 93.34 92.04 92.38	99.74 DTW 4.37 6.12 7.52 4.1 5.24 5.23 6.90 4.00 6.78 7.91 7.96 8.54 7.05 5.91 6.88 9.1 3.68 9.1 3.68 5.12 5.00 6.70 8.65 7.84 6.40 7.7 7.36	
SCREEN INTERVAL TOC ELEVATION DATE 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005 12/28/2005 3/29/2006 9/29/2006 1/5/2007 8/10/2007 1/11/2008 4/18/2008 7/17/2008 10/21/2008 2/3/2009 5/4/2009 8/5/2009 10/28/2009 10/28/2009 11/8/2011 1/3/2012 4/3/2012 8/20/2012 11/26/2012 2/25/2013 5/23/2013 11/20/2013		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed	91.75	25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48 94.49 92.82 95.72 92.94 91.81 91.76 91.18 92.67 93.81 92.84 90.62 96.04 94.6 94.62 94.62 94.62 94.72 93.02 91.07 91.90 93.34 92.04 92.38 94.22	99.74 DTW 4.37 6.12 7.52 4.1 5.24 5.23 6.90 4.00 6.78 7.91 7.96 8.54 7.05 5.91 6.88 9.1 3.68 5.12 5.00 6.70 8.65 7.84 6.40 7.7 7.36 5.52	
SCREEN INTERVAL TOC ELEVATION DATE 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005 12/28/2005 3/29/2006 9/29/2006 1/5/2007 8/10/2007 1/11/2008 4/18/2008 7/17/2008 10/21/2008 2/3/2009 5/4/2009 5/4/2009 8/5/2009 10/28/2009 10/28/2009 10/28/2009 11/8/2011 1/3/2012 4/3/2012 8/20/2012 11/26/2012 2/25/2013 5/23/2013 11/20/2014		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed	91.75	25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48 94.49 92.82 95.72 92.94 91.81 91.76 91.18 92.67 93.81 92.84 90.62 96.04 94.6 94.6 94.72 93.02 91.07 91.90 93.34 92.04 92.38	99.74 DTW 4.37 6.12 7.52 4.1 5.24 5.23 6.90 4.00 6.78 7.91 7.96 8.54 7.05 5.91 6.88 9.1 3.68 5.12 5.91 6.88 9.1 3.68 5.12 5.00 6.70 8.65 7.84 6.40 7.7 7.36 5.52 7.49	
SCREEN INTERVAL TOC ELEVATION DATE 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005 12/28/2005 3/29/2006 9/29/2006 1/5/2007 8/10/2007 1/11/2008 4/18/2008 7/17/2008 10/21/2008 2/3/2009 5/4/2009 5/4/2009 8/5/2009 10/28/2009 10/28/2009 10/28/2009 11/8/2011 1/3/2012 4/3/2012 8/20/2012 11/26/2012 2/25/2013 5/23/2013 11/20/2014		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed	91.75	25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48 94.49 92.82 95.72 92.94 91.81 91.76 91.18 92.67 93.81 92.84 90.62 96.04 94.6 94.6 94.6 94.72 93.02 91.07 91.90 93.34 92.04 92.38 94.22 92.25 93.54	99.74 DTW 4.37 6.12 7.52 4.1 5.24 5.23 6.90 4.00 6.78 7.91 7.96 8.54 7.05 5.91 6.88 9.1 3.68 5.12 5.91 6.88 9.1 3.68 5.12 5.91 6.88 9.1 3.68 5.12 5.91 6.88 9.1 3.68 5.12 5.91 6.88 9.1 3.68 5.12 5.91 6.88 9.1 3.68 5.12 5.91 6.88 9.1 3.68 5.12 5.91 6.88 9.1 3.68 5.12 5.91 6.88 9.1 3.68 5.12 5.91 6.88 9.1 3.68 5.12 5.91 6.88 9.1 3.68 5.12 5.00 6.70 8.55 7.84 6.40 7.7 7.36 5.52 7.49 6.20	
SCREEN INTERVAL TOC ELEVATION DATE 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005 12/28/2005 3/29/2006 9/29/2006 1/5/2007 8/10/2007 1/11/2008 4/18/2008 7/17/2008 10/21/2008 2/3/2009 5/4/2009 5/4/2009 8/5/2009 10/28/2009 10/28/2009 10/28/2009 11/8/2011 1/3/2012 4/3/2012 8/20/2012 11/26/2012 2/25/2013 5/23/2013 11/20/2014		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed	91.75	25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48 94.49 92.82 95.72 92.94 91.81 91.76 91.18 92.67 93.81 92.84 90.62 96.04 94.6 94.6 94.72 93.02 91.07 91.90 93.34 92.04 92.38	99.74 DTW 4.37 6.12 7.52 4.1 5.24 5.23 6.90 4.00 6.78 7.91 7.96 8.54 7.05 5.91 6.88 9.1 3.68 5.12 5.91 6.88 9.1 3.68 5.12 5.00 6.70 8.65 7.84 6.40 7.7 7.36 5.52 7.49	
SCREEN INTERVAL TOC ELEVATION DATE 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005 12/28/2005 3/29/2006 9/29/2006 1/5/2007 8/10/2007 1/11/2008 4/18/2008 7/17/2008 10/21/2008 2/3/2009 5/4/2009 5/4/2009 8/5/2009 10/28/2009 10/28/2009 10/28/2009 11/8/2011 1/3/2012 4/3/2012 8/20/2012 11/26/2012 2/25/2013 5/23/2013 11/20/2014 11/19/2014		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed	91.75	25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48 94.49 92.82 95.72 92.94 91.81 91.76 91.18 92.67 93.81 92.84 90.62 96.04 94.6 94.6 94.6 94.72 93.02 91.07 91.90 93.34 92.04 92.38 94.22 92.25 93.54 92.61	99.74 DTW 4.37 6.12 7.52 4.1 5.24 5.23 6.90 4.00 6.78 7.91 7.96 8.54 7.05 5.91 6.88 9.1 3.68 5.12 5.91 6.88 9.1 3.68 5.12 5.91 6.88 9.1 3.68 5.12 5.91 6.88 9.1 3.68 5.12 5.91 6.88 9.1 3.68 5.12 5.91 6.88 9.1 3.68 5.12 5.91 6.88 9.1 3.68 5.12 5.91 6.88 9.1 3.68 5.12 5.91 6.88 9.1 3.68 5.12 5.91 6.88 9.1 3.68 5.12 5.91 6.88 9.1 3.68 5.12 5.00 6.70 8.65 7.84 6.40 7.7 7.36 5.52 7.49 6.20 7.13	
SCREEN INTERVAL TOC ELEVATION DATE 12/11/2002 5/15/2003 6/16/2003 11/6/2003 2/18/2004 5/18/2004 8/26/2004 9/27/2005 12/28/2005 3/29/2006 9/29/2006 1/5/2007 8/10/2007 1/11/2008 4/18/2008 7/17/2008 10/21/2008 2/3/2009 5/4/2009 5/4/2009 8/5/2009 10/28/2009 10/28/2009 11/8/2011 1/3/2012 4/3/2012 8/20/2012 11/26/2012 2/25/2013 5/23/2013 11/20/2014		2 to 14	FP		.5 to 14		ELEV 95.22 92.91 ga	1.5 to 14 100.6 DTW 5.34 7.65 ate locke	FP ed	91.75	25 to 30 99.68			4 to 14		95.35 93.6 92.2 95.62 94.48 94.49 92.82 95.72 92.94 91.81 91.76 91.18 92.67 93.81 92.84 90.62 96.04 94.6 94.6 94.6 94.72 93.02 91.07 91.90 93.34 92.04 92.38 94.22 92.25 93.54	99.74 DTW 4.37 6.12 7.52 4.1 5.24 5.23 6.90 4.00 6.78 7.91 7.96 8.54 7.05 5.91 6.88 9.1 3.68 5.12 5.91 6.88 9.1 3.68 5.12 5.91 6.88 9.1 3.68 5.12 5.91 6.88 9.1 3.68 5.12 5.91 6.88 9.1 3.68 5.12 5.91 6.88 9.1 3.68 5.12 5.91 6.88 9.1 3.68 5.12 5.91 6.88 9.1 3.68 5.12 5.91 6.88 9.1 3.68 5.12 5.91 6.88 9.1 3.68 5.12 5.90 6.70 8.55 7.84 6.40 7.7 7.36 5.52 7.49 6.20 7.13 5.30	

6/16/2016								95.95	3.79	
12/21/2016								93.14	6.60	
6/19/2017								96.27	3.47	

TABLE 3: GROUNDWATER ELEVATION TABLE

Facility Name: Combs Bulk Plant/Homer's Truck Stop Facility ID#: 118839176 & 118839434

All Measurements = Feet No Data = Blank

WELL NO.		MW-29)		MW-30)		MW-31			MW-32			MW-33			MW-34	
DIAMETER		2 inch																
WELL DEPTH		12 ft.																
SCREEN INTERVAL		2 to 12																
TOC ELEVATION		99.59			99.71			98.98			100.2			100.2			99.69	
DATE	ELEV		FP	ELEV	DTW	FP	ELEV		FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP
11/6/2003	95.39	4.2		95.31	4.4		95.38	3.6										
2/18/2004	93.75	5.84		93.73	5.98		93.71	5.27										
5/18/2004	92.17	7.42		92.26	7.45		92.13	6.85										
8/26/2004	95.97	3.62		95.98	3.73		96.02	2.96										
9/27/2005	94.00	5.59		95.38	4.33		95.42	3.56										
12/28/2005	94.63	4.96		94.53	5.18		94.55	4.43										
1/31/2006	93.70	5.89								93.78	6.44		93.92	6.27				
3/29/2006	93.08	6.51		92.81	6.90		92.84	6.14										
9/29/2006	95.81	3.78		95.89	3.82		95.93	3.05										
1/4/2007				93.21	6.50													
1/5/2007	91.19	8.40					93.18	5.80										
8/10/2007	91.67	7.92																
1/11/2008	91.88	7.71		91.88	7.83		91.84	7.14										
4/17/2008				91.41	8.3		91.4	7.58										
4/18/2008	91.14	8.45																
7/17/2008	93.44	6.15		94.69	5.02		94.76	4.22										
10/21/2008	94.39	5.2		95.73	3.98		95.73	3.25										
2/3/2009	92.95	6.64		92.96	6.75		92.96	6.02										
5/4/2009	90.74	8.85		90.66	9.05		90.62	8.36										
8/5/2009	96.39	3.20		96.36	3.35		96.38	2.6										
10/28/2009	94.79	4.80		94.73	4.98		94.71	4.27										
2/23/2010	93.89	5.70		93.89	5.82								94.22	5.98				
11/8/2011	94.88	4.71																
4/3/2012	91.09	8.50											91.55	8.65				
8/20/2012	91.89	7.70											5	5.00		91.86	7.83	
11/26/2012	2															93.26	6.43	
2/25/2013																91.99	7.7	
5/23/2013																92.31	7.38	
	-		•	•			-			•			-			-		

WELL NO.	MW-7R	MW-28R		
DIAMETER	2 inch	2 inch		
WELL DEPTH	12 ft.	12 ft.		
SCREEN INTERVAL	2 to 12	2 to 12		
TOC ELEVATION	99.84	99.79		

DATE	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP
4/12/2018	92.49	7.35		92.48	7.31													
7/12/2018	95.81	4.03		95.73	4.06													
10/11/2018	95.34	4.50		95.39	4.40													
1/11/2019	93.16	6.68		93.15	6.64													
9/18/2019	94.90	4.94		94.85	4.94													
12/16/2019	93.11	6.73		93.10	6.69													
3/16/2020	92.01	7.83		92.03	7.76													
6/18/2020	93.86	5.98		93.84	5.95													
7/8/2021	93.14	6.70		93.11	6.68													

Page 3 of 3

APPENDIX C

🔅 eurofins

..... Links

Review your project results through

Total Access

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Tampa 6712 Benjamin Road Suite 100 Tampa, FL 33634 Tel: (813)885-7427

Laboratory Job ID: 660-112079-1 Client Project/Site: Combs Oil Company

For: MDM Services 1055 Kathleen Road Lakeland, Florida 33805

Attn: Jeff Morgan

Mat gones

Authorized for release by: 7/16/2021 4:36:31 PM

Matt Jones, Project Manager I (850)284-4486 matthew.jones@eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions/Glossary	5
Detection Summary	6
Client Sample Results	8
QC Sample Results	16
QC Association Summary	23
Lab Chronicle	25
Method Summary	27
Certification Summary	28
Chain of Custody	29
Field Data Sheets	31
Receipt Checklists	32

Sample Summary

Client: MDM Services Project/Site: Combs Oil Company

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
660-112079-1	MW5	Water	07/08/21 11:25	07/09/21 15:50
660-112079-2	MW6	Water	07/08/21 11:56	07/09/21 15:50
660-112079-3	MW7R	Water	07/08/21 12:24	07/09/21 15:50
660-112079-4	MW8	Water	07/08/21 10:54	07/09/21 15:50
660-112079-5	MW12R	Water	07/08/21 12:59	07/09/21 15:50
660-112079-6	MW28R	Water	07/08/21 13:28	07/09/21 15:50

Job ID: 660-112079-1

Laboratory: Eurofins TestAmerica, Tampa

Narrative

Job Narrative 660-112079-1

Case Narrative

Comments

No additional comments.

Receipt

The samples were received on 7/9/2021 3:50 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.6° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Field Service / Mobile Lab

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3510C: The following samples formed emulsions during the extraction procedure: MW7R (660-112079-3), MW8 (660-112079-4) and MW28R (660-112079-6). The emulsions were broken up using sodium sulfate.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Qualifiers		3
GC/MS VOA		
Qualifier	Qualifier Description	4
U	Indicates that the compound was analyzed for but not detected.	
GC/MS Semi	VOA	5
Qualifier	Qualifier Description	
I	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.	
U	Indicates that the compound was analyzed for but not detected.	
GC Semi VOA	Α	
Qualifier	Qualifier Description	
I	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.	8
U	Indicates that the compound was analyzed for but not detected.	
Glossary		9
Abbreviation	These commonly used abbreviations may or may not be present in this report.	10
α	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	19
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
DI	Penerting Limit or Pegueted Limit (Padiochemistry)	

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

TEQToxicity Equivalent Quotient (Dioxin)TNTCToo Numerous To Count

Detection Summary

Client: MDM Services Project/Site: Combs Oil Company

Client Sample ID: MW5

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Field pH	6.4				SU	1	_	Field Sampling	Total/NA
Field Temperature	30.5				Degrees C	1		Field Sampling	Total/NA
Specific Conductance	400				uS/cm	1		Field Sampling	Total/NA
Oxygen, Dissolved	1.06				mg/L	1		Field Sampling	Total/NA
Turbidity	8.77				NTU	1		Field Sampling	Total/NA

Client Sample ID: MW6

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D Method	Prep Type
Field pH	6.4				SU	1	Field Sampling	Total/NA
Field Temperature	30.0				Degrees C	1	Field Sampling	Total/NA
Specific Conductance	490				uS/cm	1	Field Sampling	Total/NA
Oxygen, Dissolved	1.24				mg/L	1	Field Sampling	Total/NA
Turbidity	5.05				NTU	1	Field Sampling	Total/NA

Client Sample ID: MW7R

Analyte Result Qualifier PQL MDL Unit Dil Fac D Method Prep Type 8270D 0.46 Anthracene 0.10 0.083 ug/L Т 1 Total/NA 3000 1000 FL-PRO Micro Total/NA Total Petroleum Hydrocarbons 240 ug/L 1 (C8-C40) Field pH 6.5 SU Field Sampling Total/NA 1 Field Temperature 30.2 Field Sampling Total/NA Degrees C 1 Specific Conductance 460 uS/cm 1 Field Sampling Total/NA Oxygen, Dissolved 0.78 Field Sampling Total/NA mg/L 1 Turbidity 17.28 NTU 1 Field Sampling Total/NA MDL Unit Result Qualifier PQL Dil Fac D Method Analyte Prep Type Total Petroleum Hydrocarbons 3.0 1.0 0.24 mg/L 1 FL-PRO Micro Total/NA (C8-C40)

Client Sample ID: MW8

Lab Sample ID: 660-112079-4

Lab Sample ID: 660-112079-5

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Total Petroleum Hydrocarbons	800	1	1000	240	ug/L	1	_	FL-PRO Micro	Total/NA
(C8-C40)									
Field pH	6.3				SU	1		Field Sampling	Total/NA
Field Temperature	29.6				Degrees C	1		Field Sampling	Total/NA
Specific Conductance	450				uS/cm	1		Field Sampling	Total/NA
Oxygen, Dissolved	1.41				mg/L	1		Field Sampling	Total/NA
Turbidity	6.78				NTU	1		Field Sampling	Total/NA
Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Total Petroleum Hydrocarbons	0.80	1	1.0	0.24	mg/L	1	_	FL-PRO Micro	Total/NA
(C8-C40)									

Client Sample ID: MW12R

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Field pH	6.5				SU	1	_	Field Sampling	Total/NA
Field Temperature	28.1				Degrees C	1		Field Sampling	Total/NA
Specific Conductance	410				uS/cm	1		Field Sampling	Total/NA
Oxygen, Dissolved	0.81				mg/L	1		Field Sampling	Total/NA
Turbidity	3.15				NTU	1		Field Sampling	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Tampa

Job ID: 660-112079-1

Lab Sample ID: 660-112079-1

Lab Sample ID: 660-112079-2

Lab Sample ID: 660-112079-3

4 5 7 8 9 10 11 12 13 14

Client Sample ID: MW28R

Job ID: 660-112079-1

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Total Petroleum Hydrocarbons	4800		1000	240	ug/L	1	_	FL-PRO Micro	Total/NA
(C8-C40)									
Field pH	6.3				SU	1		Field Sampling	Total/NA
Field Temperature	29.2				Degrees C	1		Field Sampling	Total/NA
Specific Conductance	240				uS/cm	1		Field Sampling	Total/NA
Oxygen, Dissolved	0.50				mg/L	1		Field Sampling	Total/NA
Turbidity	3.78				NTU	1		Field Sampling	Total/NA
Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Total Petroleum Hydrocarbons	4.8		1.0	0.24	mg/L	1	_	FL-PRO Micro	Total/NA
(C8-C40)									

This Detection Summary does not include radiochemical test results.

Client Sample ID: MW5 Date Collected: 07/08/21 11:25

Date Received: 07/09/21 15:50

Method: 8260B - Volatile Or	ganic Compounds ((GC/MS)							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.25	U	1.0	0.25	ug/L			07/12/21 21:19	1
Ethylbenzene	0.27	U	1.0	0.27	ug/L			07/12/21 21:19	1
Toluene	0.24	U	1.0	0.24	ug/L			07/12/21 21:19	1
Xylenes, Total	0.50	U	4.0	0.50	ug/L			07/12/21 21:19	1
Methyl tert-butyl ether	0.44	U	2.0	0.44	ug/L			07/12/21 21:19	1
m-Xylene & p-Xylene	0.36	U	2.0	0.36	ug/L			07/12/21 21:19	1
o-Xylene	0.50	U	2.0	0.50	ug/L			07/12/21 21:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		70 - 130			-		07/12/21 21:19	1
Dibromofluoromethane	105		70 - 130					07/12/21 21:19	1
4-Bromofluorobenzene	98		70 - 130					07/12/21 21:19	1

Method: 8270D - PAHs by GC/MS (SIM)

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	1.2	U	3.7	1.2	ug/L		07/12/21 07:21	07/12/21 13:50	1
2-Methylnaphthalene	0.62	U	0.69	0.62	ug/L		07/12/21 07:21	07/12/21 13:50	1
1-Methylnaphthalene	0.59	U	0.69	0.59	ug/L		07/12/21 07:21	07/12/21 13:50	1
Acenaphthylene	0.075	U	0.46	0.075	ug/L		07/12/21 07:21	07/12/21 13:50	1
Acenaphthene	0.23	U	0.69	0.23	ug/L		07/12/21 07:21	07/12/21 13:50	1
Fluorene	0.23	U	0.69	0.23	ug/L		07/12/21 07:21	07/12/21 13:50	1
Phenanthrene	0.80	U	2.8	0.80	ug/L		07/12/21 07:21	07/12/21 13:50	1
Anthracene	0.083	U	0.46	0.083	ug/L		07/12/21 07:21	07/12/21 13:50	1
Fluoranthene	0.22	U	0.69	0.22	ug/L		07/12/21 07:21	07/12/21 13:50	1
Pyrene	0.21	U	0.46	0.21	ug/L		07/12/21 07:21	07/12/21 13:50	1
Benzo[a]anthracene	0.046	U	0.19	0.046	ug/L		07/12/21 07:21	07/12/21 13:50	1
Chrysene	0.063	U	0.46	0.063	ug/L		07/12/21 07:21	07/12/21 13:50	1
Benzo[b]fluoranthene	0.046	U	0.093	0.046	ug/L		07/12/21 07:21	07/12/21 13:50	1
Benzo[k]fluoranthene	0.077	U	0.46	0.077	ug/L		07/12/21 07:21	07/12/21 13:50	1
Benzo[a]pyrene	0.067	U	0.46	0.067	ug/L		07/12/21 07:21	07/12/21 13:50	1
Benzo[g,h,i]perylene	0.064	U	0.46	0.064	ug/L		07/12/21 07:21	07/12/21 13:50	1
Indeno[1,2,3-cd]pyrene	0.046	U	0.19	0.046	ug/L		07/12/21 07:21	07/12/21 13:50	1
Dibenz(a,h)anthracene	0.071	U	0.19	0.071	ug/L		07/12/21 07:21	07/12/21 13:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-methylnaphthalene-d10	70		19 - 110				07/12/21 07:21	07/12/21 13:50	1
Fluoranthene-d10	67		35 - 140				07/12/21 07:21	07/12/21 13:50	1

Method: FL-PRO Micro - Florida - Petroleum Range Organics (GC)

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Petroleum Hydrocarbons (C8-C40)	240	U	1000	240	ug/L		07/12/21 07:12	07/12/21 16:37	1
· · · ·		• • • •				_			
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Petroleum Hydrocarbons	0.24	U	1.0	0.24	mg/L		07/12/21 07:12	07/12/21 16:37	1
(C8-C40)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	134		66 - 139				07/12/21 07:12	07/12/21 16:37	1
n-C39	113		40 - 129				07/12/21 07:12	07/12/21 16:37	1

Job ID: 660-112079-1

Lab Sample ID: 660-112079-1

Matrix: Water

5

7

Client Sample Results

ent: MDM Services			it Sample R					Job ID: 660-1	12079-1
roject/Site: Combs Oil Company									
lient Sample ID: MW5							Lab Samp	le ID: 660-11	2079-1
ate Collected: 07/08/21 11:25								Matrix	k: Water
ate Received: 07/09/21 15:50									
Method: Field Sampling - Field Sa	ampling								
Analyte		Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	6.4				SU			07/08/21 11:25	1
Field Temperature	30.5				Degrees C			07/08/21 11:25	1
Specific Conductance	400				uS/cm			07/08/21 11:25	1
Oxygen, Dissolved	1.06				mg/L			07/08/21 11:25	1
Turbidity	8.77				NTU			07/08/21 11:25	1
lient Sample ID: MW6							Lab Samp	le ID: 660-11	2079-2
ate Collected: 07/08/21 11:56								Matrix	k: Water
ate Received: 07/09/21 15:50									
Method: 8260B - Volatile Organic	Compounds (GC/MS)							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.25	U	1.0	0.25	ug/L			07/12/21 22:18	1
Ethylbenzene	0.27	U	1.0	0.27	ug/L			07/12/21 22:18	1
Toluene	0.24	U	1.0	0.24	ug/L			07/12/21 22:18	1
Xylenes, Total	0.50	U	4.0	0.50	ug/L			07/12/21 22:18	1
Methyl tert-butyl ether	0.44	U	2.0	0.44	ug/L			07/12/21 22:18	1
m-Xylene & p-Xylene	0.36	U	2.0	0.36	ug/L			07/12/21 22:18	1
o-Xylene	0.50	U	2.0	0.50	ug/L			07/12/21 22:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97		70 - 130					07/12/21 22:18	1
Dibromofluoromethane	103		70 - 130					07/12/21 22:18	1
4-Bromofluorobenzene	101		70 - 130					07/12/21 22:18	1
Method: 8270D - PAHs by GC/MS	(SIM)								
Analyte	Result	Qualifier	PQL		Unit	D	Prepared	Analyzed	Dil Fac
Method: 8270D - PAHs by GC/MS Analyte Naphthalene	Result 1.2	U	3.7	1.2	ug/L	_ <u>D</u>	07/12/21 07:21	07/12/21 11:42	Dil Fac
Analyte Naphthalene 2-Methylnaphthalene	Result 1.2 0.62	U U U	3.7 0.69	1.2 0.62	ug/L ug/L	_ <u>D</u>	07/12/21 07:21 07/12/21 07:21	07/12/21 11:42 07/12/21 11:42	1
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene	Result 1.2 0.62 0.59	U U U U	3.7 0.69 0.69	1.2 0.62 0.59	ug/L ug/L ug/L	_ <u>D</u>	07/12/21 07:21 07/12/21 07:21 07/12/21 07:21	07/12/21 11:42 07/12/21 11:42 07/12/21 11:42	1 1 1
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene	Result 1.2 0.62 0.59 0.075		3.7 0.69 0.69 0.46	1.2 0.62 0.59 0.075	ug/L ug/L ug/L ug/L	<u>D</u>	07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21	07/12/21 11:42 07/12/21 11:42 07/12/21 11:42 07/12/21 11:42	1 1 1 1
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene	Result 1.2 0.62 0.59 0.075 0.23		3.7 0.69 0.69 0.46 0.69	1.2 0.62 0.59 0.075 0.23	ug/L ug/L ug/L ug/L ug/L	_ <u>D</u>	07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21	07/12/21 11:42 07/12/21 11:42 07/12/21 11:42 07/12/21 11:42 07/12/21 11:42	1 1 1 1 1 1
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene	Result 1.2 0.62 0.59 0.075 0.23 0.23		3.7 0.69 0.69 0.46 0.69 0.69	1.2 0.62 0.59 0.075 0.23 0.23	ug/L ug/L ug/L ug/L ug/L	_ <u>D</u>	07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21	07/12/21 11:42 07/12/21 11:42 07/12/21 11:42 07/12/21 11:42 07/12/21 11:42 07/12/21 11:42	1 1 1 1 1 1
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	Result 1.2 0.62 0.59 0.075 0.23 0.23 0.80		3.7 0.69 0.69 0.46 0.69 0.69 2.8	1.2 0.62 0.59 0.075 0.23 0.23 0.80	ug/L ug/L ug/L ug/L ug/L ug/L	<u> </u>	07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21	07/12/21 11:42 07/12/21 11:42 07/12/21 11:42 07/12/21 11:42 07/12/21 11:42 07/12/21 11:42 07/12/21 11:42	1 1 1 1 1 1
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	Result 1.2 0.62 0.59 0.075 0.23 0.23 0.80 0.083		3.7 0.69 0.69 0.46 0.69 0.69 2.8 0.46	1.2 0.62 0.59 0.075 0.23 0.23 0.80 0.083	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u> </u>	07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21	07/12/21 11:42 07/12/21 11:42 07/12/21 11:42 07/12/21 11:42 07/12/21 11:42 07/12/21 11:42 07/12/21 11:42 07/12/21 11:42	1 1 1 1 1 1 1 1 1 1
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	Result 1.2 0.62 0.59 0.075 0.23 0.23 0.80 0.083 0.22		3.7 0.69 0.69 0.46 0.69 0.69 2.8 0.46 0.69	1.2 0.62 0.59 0.075 0.23 0.23 0.80 0.083 0.22	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21	07/12/21 11:42 07/12/21 11:42 07/12/21 11:42 07/12/21 11:42 07/12/21 11:42 07/12/21 11:42 07/12/21 11:42 07/12/21 11:42 07/12/21 11:42	1 1 1 1 1 1 1 1 1 1 1
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	Result 1.2 0.62 0.59 0.075 0.23 0.23 0.80 0.083 0.22 0.21		3.7 0.69 0.69 0.46 0.69 0.69 2.8 0.46 0.69 0.46	1.2 0.62 0.59 0.075 0.23 0.23 0.80 0.083 0.22 0.21	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	_ <u>D</u>	07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21	07/12/21 11:42 07/12/21 11:42 07/12/21 11:42 07/12/21 11:42 07/12/21 11:42 07/12/21 11:42 07/12/21 11:42 07/12/21 11:42 07/12/21 11:42 07/12/21 11:42	1 1 1 1 1 1 1 1 1 1 1 1
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo[a]anthracene	Result 1.2 0.62 0.59 0.075 0.23 0.23 0.80 0.083 0.22 0.21 0.046		3.7 0.69 0.69 0.46 0.69 0.69 2.8 0.46 0.69 0.46 0.19	1.2 0.62 0.59 0.075 0.23 0.23 0.80 0.083 0.22 0.21 0.046	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u> </u>	07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21 07/12/21 07:21	07/12/21 11:42 07/12/21 11:42	1 1 1 1 1 1 1 1 1 1 1
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo[a]anthracene Chrysene	Result 1.2 0.62 0.59 0.075 0.23 0.23 0.80 0.083 0.22 0.21 0.046 0.063		3.7 0.69 0.69 0.46 0.69 0.69 2.8 0.46 0.69 0.46 0.19 0.46	1.2 0.62 0.59 0.075 0.23 0.23 0.80 0.083 0.22 0.21 0.046 0.063	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u> </u>	07/12/21 07:21 07/12/21 07:21	07/12/21 11:42 07/12/21 11:42	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo[a]anthracene Chrysene Benzo[b]fluoranthene	Result 1.2 0.62 0.59 0.075 0.23 0.23 0.80 0.083 0.22 0.21 0.046 0.063 0.046		3.7 0.69 0.69 0.46 0.69 2.8 0.46 0.69 0.46 0.19 0.46 0.093	1.2 0.62 0.59 0.075 0.23 0.23 0.80 0.083 0.22 0.21 0.046 0.063 0.046	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	_ <u>P</u>	07/12/21 07:21 07/12/21 07:21	07/12/21 11:42 07/12/21 11:42	1 1 1 1 1 1 1 1 1 1 1 1
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo[a]anthracene Chrysene Benzo[b]fluoranthene Benzo[k]fluoranthene	Result 1.2 0.62 0.59 0.075 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.24 0.083 0.22 0.21 0.046 0.046 0.046 0.077		3.7 0.69 0.69 0.46 0.69 0.69 2.8 0.46 0.69 0.46 0.19 0.46 0.093 0.46	1.2 0.62 0.59 0.075 0.23 0.23 0.80 0.083 0.22 0.21 0.046 0.063 0.046 0.077	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	07/12/21 07:21 07/12/21 07:21	07/12/21 11:42 07/12/21 11:42	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo[a]anthracene Chrysene Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene	Result 1.2 0.62 0.59 0.075 0.23 0.23 0.80 0.083 0.22 0.21 0.046 0.063 0.046 0.077 0.067		$\begin{array}{c} 3.7\\ 0.69\\ 0.69\\ 0.46\\ 0.69\\ 2.8\\ 0.46\\ 0.69\\ 0.46\\ 0.19\\ 0.46\\ 0.093\\ 0.46\\ 0.093\\ 0.46\\ 0.46\\ 0.46\\ \end{array}$	1.2 0.62 0.59 0.075 0.23 0.23 0.80 0.083 0.22 0.21 0.046 0.063 0.046 0.077 0.067	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	_ <u>D</u>	07/12/21 07:21 07/12/21 07:21	07/12/21 11:42 07/12/21 11:42	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Fluoranthene Fluoranthene Pyrene Benzo[a]anthracene Chrysene Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene Benzo[g,h,i]perylene	Result 1.2 0.62 0.59 0.075 0.23 0.23 0.80 0.083 0.22 0.21 0.046 0.077 0.046 0.067 0.064		$\begin{array}{c} 3.7\\ 0.69\\ 0.69\\ 0.46\\ 0.69\\ 0.69\\ 2.8\\ 0.46\\ 0.69\\ 0.46\\ 0.19\\ 0.46\\ 0.093\\ 0.46\\ 0.093\\ 0.46\\ 0.46\\ 0.46\\ 0.46\\ 0.46\\ \end{array}$	1.2 0.62 0.59 0.075 0.23 0.23 0.80 0.083 0.22 0.21 0.046 0.063 0.046 0.077 0.067 0.064	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	_ <u>D</u>	07/12/21 07:21 07/12/21 07:21	07/12/21 11:42 07/12/21 11:42	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo[a]anthracene Chrysene Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene Benzo[g,h,i]perylene Indeno[1,2,3-cd]pyrene	Result 1.2 0.62 0.59 0.075 0.23 0.23 0.80 0.083 0.22 0.21 0.046 0.077 0.046 0.067 0.064 0.046		$\begin{array}{c} 3.7\\ 0.69\\ 0.69\\ 0.69\\ 0.46\\ 0.69\\ 2.8\\ 0.46\\ 0.69\\ 0.46\\ 0.19\\ 0.46\\ 0.093\\ 0.46\\ 0.093\\ 0.46\\ 0.46\\ 0.46\\ 0.46\\ 0.46\\ 0.19\\ \end{array}$	1.2 0.62 0.59 0.075 0.23 0.23 0.80 0.083 0.22 0.21 0.046 0.063 0.046 0.077 0.067 0.064 0.046	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	_ D	07/12/21 07:21 07/12/21 07:21	07/12/21 11:42 07/12/21 11:42	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Fluoranthene Fluoranthene Pyrene Benzo[a]anthracene Chrysene Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene Benzo[g,h,i]perylene	Result 1.2 0.62 0.59 0.075 0.23 0.23 0.80 0.083 0.22 0.21 0.046 0.077 0.046 0.067 0.064		$\begin{array}{c} 3.7\\ 0.69\\ 0.69\\ 0.69\\ 0.46\\ 0.69\\ 2.8\\ 0.46\\ 0.69\\ 0.46\\ 0.19\\ 0.46\\ 0.093\\ 0.46\\ 0.093\\ 0.46\\ 0.46\\ 0.46\\ 0.46\\ 0.46\\ \end{array}$	1.2 0.62 0.59 0.075 0.23 0.23 0.80 0.083 0.22 0.21 0.046 0.063 0.046 0.077 0.067 0.064	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	07/12/21 07:21 07/12/21 07:21	07/12/21 11:42 07/12/21 11:42	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo[a]anthracene Chrysene Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene Benzo[g,h,i]perylene Indeno[1,2,3-cd]pyrene	Result 1.2 0.62 0.59 0.075 0.23 0.23 0.80 0.083 0.22 0.21 0.046 0.077 0.046 0.067 0.064 0.046		$\begin{array}{c} 3.7\\ 0.69\\ 0.69\\ 0.69\\ 0.46\\ 0.69\\ 2.8\\ 0.46\\ 0.69\\ 0.46\\ 0.19\\ 0.46\\ 0.093\\ 0.46\\ 0.093\\ 0.46\\ 0.46\\ 0.46\\ 0.46\\ 0.46\\ 0.19\\ \end{array}$	1.2 0.62 0.59 0.075 0.23 0.23 0.80 0.083 0.22 0.21 0.046 0.063 0.046 0.077 0.067 0.064 0.046	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	_ <u>D</u>	07/12/21 07:21 07/12/21 07:21	07/12/21 11:42 07/12/21 11:42	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Client Sample ID: MW6

Date Collected: 07/08/21 11:56 Date Received: 07/09/21 15:50

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Petroleum Hydrocarbons	240	U	1000	240	ug/L		07/12/21 07:12	07/12/21 17:19	1
(C8-C40)									
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Petroleum Hydrocarbons	0.24	U	1.0	0.24	mg/L		07/12/21 07:12	07/12/21 17:19	1
(C8-C40)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	116		66 - 139				07/12/21 07:12	07/12/21 17:19	1
n-C39	98		40 - 129				07/12/21 07:12	07/12/21 17:19	1
- Method: Field Sampling - Field	d Sampling								
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	6.4				SU			07/08/21 11:56	1
	0.4							01/00/21 11:00	

Field Temperature	30.0	Degrees C	07/08/21 11:56
Specific Conductance	490	uS/cm	07/08/21 11:56
Oxygen, Dissolved	1.24	mg/L	07/08/21 11:56
Turbidity	5.05	NTU	07/08/21 11:56

Client Sample ID: MW7R

Date Collected: 07/08/21 12:24

Date Received: 07/09/21 15:50

Method: 8260B - Volatile Organic Compounds (GC/MS) Analyte Result Qualifier PQL MDL Unit D Dil Fac Prepared Analyzed 0.25 U Benzene 1.0 0.25 ug/L 07/12/21 21:58 1 Ethylbenzene 0.27 U 07/12/21 21:58 1.0 0.27 ug/L 1 Toluene 0.24 U 1.0 0.24 ug/L 07/12/21 21:58 1 Xylenes, Total 0.50 U 4.0 0.50 ug/L 07/12/21 21:58 1 Methyl tert-butyl ether 0.44 U 2.0 0.44 ug/L 07/12/21 21:58 1 m-Xylene & p-Xylene 0.36 U 2.0 0.36 ug/L 07/12/21 21:58 1 o-Xylene 0.50 U 2.0 0.50 ug/L 07/12/21 21:58 1 Dil Fac Surrogate %Recovery Qualifier Prepared Limits Analyzed Toluene-d8 (Surr) 70 - 130 07/12/21 21:58 100 1 Dibromofluoromethane 102 70 - 130 07/12/21 21:58 1

70 - 130

Method: 8270D - PAHs by GC/MS (SIM)

101

4-Bromofluorobenzene

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	1.2	U	3.7	1.2	ug/L		07/12/21 07:21	07/12/21 12:02	1
2-Methylnaphthalene	0.62	U	0.69	0.62	ug/L		07/12/21 07:21	07/12/21 12:02	1
1-Methylnaphthalene	0.59	U	0.69	0.59	ug/L		07/12/21 07:21	07/12/21 12:02	1
Acenaphthylene	0.075	U	0.46	0.075	ug/L		07/12/21 07:21	07/12/21 12:02	1
Acenaphthene	0.23	U	0.69	0.23	ug/L		07/12/21 07:21	07/12/21 12:02	1
Fluorene	0.23	U	0.69	0.23	ug/L		07/12/21 07:21	07/12/21 12:02	1
Phenanthrene	0.80	U	2.8	0.80	ug/L		07/12/21 07:21	07/12/21 12:02	1
Anthracene	0.10	1	0.46	0.083	ug/L		07/12/21 07:21	07/12/21 12:02	1
Fluoranthene	0.22	U	0.69	0.22	ug/L		07/12/21 07:21	07/12/21 12:02	1
Pyrene	0.21	U	0.46	0.21	ug/L		07/12/21 07:21	07/12/21 12:02	1
Benzo[a]anthracene	0.046	U	0.19	0.046	ug/L		07/12/21 07:21	07/12/21 12:02	1
Chrysene	0.063	U	0.46	0.063	ug/L		07/12/21 07:21	07/12/21 12:02	1

Eurofins TestAmerica, Tampa

Matrix: Water

5

7

Lab Sample ID: 660-112079-2

Lab Sample ID: 660-112079-3 Matrix: Water

07/12/21 21:58

1

PQL

0.093

0.46

0.46

0.46

0.19

0 1 9

Limits

19 - 110

35 - 140

MDL Unit

0.046 ug/L

0.077 ug/L

0.067 ug/L

0.064 ug/L

0.046 ug/L

0.071 ug/L

MDL Unit

NTU

Client Sample ID: MW7R Date Collected: 07/08/21 12:24

Analyte

Benzo[b]fluoranthene

Benzo[k]fluoranthene

Benzo[g,h,i]perylene Indeno[1,2,3-cd]pyrene

Dibenz(a,h)anthracene

2-methylnaphthalene-d10

Fluoranthene-d10

Benzo[a]pyrene

Surrogate

Method: 8270D - PAHs by GC/MS (SIM) (Continued)

Result Qualifier

0.046 U

0.077 U

0.067 U

0.064 U

0.046 U

0.071 U

%Recovery Qualifier

75

88

17.28

Lab Sample ID: 660-	112
Ма	trix

Prepared

07/12/21 07:21

07/12/21 07:21

07/12/21 07:21

07/12/21 07:21

07/12/21 07:21

07/12/21 07:21

Prepared

07/12/21 07:21

07/12/21 07:21

Prepared

D

D

12079-3
ix: Water
Dil Fac
1
1
1
1
1
1
Dil Fac
1
1
Dil Fac
1
Dil Fac
Dil Eac

Dil Fac

1

1

1

1

1

Matrix: Water

Method: FL-PRO Micro - F	lorida - Petroleum Ra	inge Organics (GC))
Analyte	Result	Qualifier	F

Total Petroleum Hydrocarbons (C8-C40)	3000		1000	240	ug/L		07/12/21 07:12	07/12/21 18:01	1
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Petroleum Hydrocarbons (C8-C40)	3.0		1.0	0.24	mg/L		07/12/21 07:12	07/12/21 18:01	1

PQL

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	127		66 - 139	07/12/21 07:12	07/12/21 18:01	1
n-C39	109		40 - 129	07/12/21 07:12	07/12/21 18:01	1

Method: Field Sampling - Field Sampling Analyte Result Qualifier PQL MDL Unit D Prepared Analyzed SU 07/08/21 12:24 Field pH 6.5 Degrees C 07/08/21 12:24 **Field Temperature** 30.2 460 uS/cm 07/08/21 12:24 **Specific Conductance** 07/08/21 12:24 **Oxygen, Dissolved** 0.78 mg/L

Client Sample ID: MW8

Turbidity

Date Collected: 07/08/21 10:54

Date Received: 07/09/21 15:50

Method: 8260B - Volatile Or	ganic Compounds	(GC/MS)							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.25	U	1.0	0.25	ug/L			07/12/21 21:39	1
Ethylbenzene	0.27	U	1.0	0.27	ug/L			07/12/21 21:39	1
Toluene	0.24	U	1.0	0.24	ug/L			07/12/21 21:39	1
Xylenes, Total	0.50	U	4.0	0.50	ug/L			07/12/21 21:39	1
Methyl tert-butyl ether	0.44	U	2.0	0.44	ug/L			07/12/21 21:39	1
m-Xylene & p-Xylene	0.36	U	2.0	0.36	ug/L			07/12/21 21:39	1
o-Xylene	0.50	U	2.0	0.50	ug/L			07/12/21 21:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		70 - 130			-		07/12/21 21:39	1
Dibromofluoromethane	105		70 - 130					07/12/21 21:39	1
4-Bromofluorobenzene	98		70 - 130					07/12/21 21:39	1

Analyzed

07/12/21 12:02

07/12/21 12:02

07/12/21 12:02

07/12/21 12:02

07/12/21 12:02

07/12/21 12:02

Analyzed

07/12/21 12:02

07/12/21 12:02

Analyzed

07/08/21 12:24

Lab Sample ID: 660-112079-4

Client Sample ID: MW8 Date Collected: 07/08/21 10:54

Date Received: 07/09/21 15:50

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	1.2	U	3.7	1.2	ug/L		07/12/21 07:21	07/12/21 12:22	1
2-Methylnaphthalene	0.62	U	0.69	0.62	ug/L		07/12/21 07:21	07/12/21 12:22	1
1-Methylnaphthalene	0.59	U	0.69	0.59	ug/L		07/12/21 07:21	07/12/21 12:22	1
Acenaphthylene	0.075	U	0.46	0.075	ug/L		07/12/21 07:21	07/12/21 12:22	1
Acenaphthene	0.23	U	0.69	0.23	ug/L		07/12/21 07:21	07/12/21 12:22	1
Fluorene	0.23	U	0.69	0.23	ug/L		07/12/21 07:21	07/12/21 12:22	1
Phenanthrene	0.80	U	2.8	0.80	ug/L		07/12/21 07:21	07/12/21 12:22	1
Anthracene	0.083	U	0.46	0.083	ug/L		07/12/21 07:21	07/12/21 12:22	1
Fluoranthene	0.22	U	0.69	0.22	ug/L		07/12/21 07:21	07/12/21 12:22	1
Pyrene	0.21	U	0.46	0.21	ug/L		07/12/21 07:21	07/12/21 12:22	1
Benzo[a]anthracene	0.046	U	0.19	0.046	ug/L		07/12/21 07:21	07/12/21 12:22	1
Chrysene	0.063	U	0.46	0.063	ug/L		07/12/21 07:21	07/12/21 12:22	1
Benzo[b]fluoranthene	0.046	U	0.093	0.046	ug/L		07/12/21 07:21	07/12/21 12:22	1
Benzo[k]fluoranthene	0.077	U	0.46	0.077	ug/L		07/12/21 07:21	07/12/21 12:22	1
Benzo[a]pyrene	0.067	U	0.46	0.067	ug/L		07/12/21 07:21	07/12/21 12:22	1
Benzo[g,h,i]perylene	0.064	U	0.46	0.064	ug/L		07/12/21 07:21	07/12/21 12:22	1
ndeno[1,2,3-cd]pyrene	0.046	U	0.19	0.046	ug/L		07/12/21 07:21	07/12/21 12:22	1
Dibenz(a,h)anthracene	0.071	U	0.19	0.071	ug/L		07/12/21 07:21	07/12/21 12:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-methylnaphthalene-d10	71		19 - 110				07/12/21 07:21	07/12/21 12:22	1
Fluoranthene-d10	84		35 - 140				07/12/21 07:21	07/12/21 12:22	1
Method: FL-PRO Micro - Florida	a - Petroleum Ra	ange Organ	ics (GC)						
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fotal Petroleum Hydrocarbons (C8-C40)	800	I	1000	240	ug/L		07/12/21 07:12	07/12/21 18:23	1
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
otal Petroleum Hydrocarbons C8-C40)	0.80	I	1.0	0.24	mg/L		07/12/21 07:12	07/12/21 18:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	134		66 - 139	07/12/21 07:12	07/12/21 18:23	1
n-C39	108		40 - 129	07/12/21 07:12	07/12/21 18:23	1

Method: Field Sampling - Field Sampling

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	6.3				SU			07/08/21 10:54	1
Field Temperature	29.6				Degrees C			07/08/21 10:54	1
Specific Conductance	450				uS/cm			07/08/21 10:54	1
Oxygen, Dissolved	1.41				mg/L			07/08/21 10:54	1
Turbidity	6.78				NTU			07/08/21 10:54	1

Client Sample ID: MW12R

Date Collected: 07/08/21 12:59

Date Received: 07/09/21 15:50

Method: 8260B - Volatile Organic C	ompounds (GC/MS)							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.25	U	1.0	0.25	ug/L			07/14/21 18:09	1
Ethylbenzene	0.27	U	1.0	0.27	ug/L			07/14/21 18:09	1

Lab Sample ID: 660-112079-4

Matrix: Water

5

7

Eurofins TestAmerica, Tampa

Lab Sample ID: 660-112079-5

Matrix: Water

Client Sample ID: MW12R Date Collected: 07/08/21 12:59

Date Received: 07/09/21 15:50

Method: 8260B - Volatile Orga	anic Compounds (GC/MS) (Co	ontinued)						
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	0.24	U	1.0	0.24	ug/L			07/14/21 18:09	1
Xylenes, Total	0.50	U	4.0	0.50	ug/L			07/14/21 18:09	1
Methyl tert-butyl ether	0.44	U	2.0	0.44	ug/L			07/14/21 18:09	1
m-Xylene & p-Xylene	0.36	U	2.0	0.36	ug/L			07/14/21 18:09	1
o-Xylene	0.50	U	2.0	0.50	ug/L			07/14/21 18:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	103		70 - 130			-		07/14/21 18:09	1
Dibromofluoromethane	106		70 - 130					07/14/21 18:09	1
4-Bromofluorobenzene	100		70 - 130					07/14/21 18:09	1

Method: 8270D - PAHs by GC/MS (SIM)

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	1.2	U	3.7	1.2	ug/L		07/12/21 07:21	07/12/21 12:43	1
2-Methylnaphthalene	0.62	U	0.69	0.62	ug/L		07/12/21 07:21	07/12/21 12:43	1
1-Methylnaphthalene	0.59	U	0.69	0.59	ug/L		07/12/21 07:21	07/12/21 12:43	1
Acenaphthylene	0.075	U	0.46	0.075	ug/L		07/12/21 07:21	07/12/21 12:43	1
Acenaphthene	0.23	U	0.69	0.23	ug/L		07/12/21 07:21	07/12/21 12:43	1
Fluorene	0.23	U	0.69	0.23	ug/L		07/12/21 07:21	07/12/21 12:43	1
Phenanthrene	0.80	U	2.8	0.80	ug/L		07/12/21 07:21	07/12/21 12:43	1
Anthracene	0.083	U	0.46	0.083	ug/L		07/12/21 07:21	07/12/21 12:43	1
Fluoranthene	0.22	U	0.69	0.22	ug/L		07/12/21 07:21	07/12/21 12:43	1
Pyrene	0.21	U	0.46	0.21	ug/L		07/12/21 07:21	07/12/21 12:43	1
Benzo[a]anthracene	0.046	U	0.19	0.046	ug/L		07/12/21 07:21	07/12/21 12:43	1
Chrysene	0.063	U	0.46	0.063	ug/L		07/12/21 07:21	07/12/21 12:43	1
Benzo[b]fluoranthene	0.046	U	0.093	0.046	ug/L		07/12/21 07:21	07/12/21 12:43	1
Benzo[k]fluoranthene	0.077	U	0.46	0.077	ug/L		07/12/21 07:21	07/12/21 12:43	1
Benzo[a]pyrene	0.067	U	0.46	0.067	ug/L		07/12/21 07:21	07/12/21 12:43	1
Benzo[g,h,i]perylene	0.064	U	0.46	0.064	ug/L		07/12/21 07:21	07/12/21 12:43	1
Indeno[1,2,3-cd]pyrene	0.046	U	0.19	0.046	ug/L		07/12/21 07:21	07/12/21 12:43	1
Dibenz(a,h)anthracene	0.071	U	0.19	0.071	ug/L		07/12/21 07:21	07/12/21 12:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-methylnaphthalene-d10	55		19 - 110				07/12/21 07:21	07/12/21 12:43	1
Fluoranthene-d10	85		35 _ 140				07/12/21 07:21	07/12/21 12:43	1

'RO Micro - Florida - Petroleum Range Organics (GC) Method: H

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Petroleum Hydrocarbons	240	U	1000	240	ug/L		07/12/21 07:12	07/12/21 18:44	1
(C8-C40)									
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Petroleum Hydrocarbons	0.24	U	1.0	0.24	mg/L		07/12/21 07:12	07/12/21 18:44	1
(C8-C40)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	122		66 - 139				07/12/21 07:12	07/12/21 18:44	1
n-C39	96		40 - 129				07/12/21 07:12	07/12/21 18:44	1
Method: Field Sampling - Field	Sampling								
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	6.5				SU			07/08/21 12:59	1

Job ID: 660-112079-1

Lab Sample ID: 660-112079-5 Matrix: Water

5

7

Client Sample Results

lient: MDM Services		enen	t Sample R					Job ID: 660-1	12079-1
Project/Site: Combs Oil Company								000 12.000 1	12010 1
Client Sample ID: MW12R							Lab Samp	le ID: 660-11	
Date Collected: 07/08/21 12:59 Date Received: 07/09/21 15:50								Watro	c: Water
Method: Field Sampling - Field Sar Analyte		<mark>inued)</mark> Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field Temperature	28.1				Degrees C			07/08/21 12:59	1
Specific Conductance	410				uS/cm			07/08/21 12:59	1
Oxygen, Dissolved	0.81				mg/L			07/08/21 12:59	
Turbidity	3.15				NTU			07/08/21 12:59	1
Nient Comple ID: MM/22D							Lab Camp		2070 0
Client Sample ID: MW28R							Lab Samp	le ID: 660-11	
Date Collected: 07/08/21 13:28 Date Received: 07/09/21 15:50								Matrix	c: Water
Method: 8260B - Volatile Organic C	ompounds								
Analyte		Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.25		1.0		ug/L			07/14/21 18:29	1
Ethylbenzene	0.27		1.0		U U			07/14/21 18:29	1
Toluene	0.24		1.0		ug/L			07/14/21 18:29	
Xylenes, Total	0.50		4.0		ug/L			07/14/21 18:29	
Methyl tert-butyl ether	0.44	U	2.0		ug/L			07/14/21 18:29	1
m-Xylene & p-Xylene	0.36		2.0		ug/L			07/14/21 18:29	
o-Xylene	0.50		2.0		ug/L			07/14/21 18:29	
							_		
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	101		70 - 130					07/14/21 18:29	·
Dibromofluoromethane	107		70 - 130					07/14/21 18:29	
4-Bromofluorobenzene	97		70 - 130					07/14/21 18:29	
Method: 8270D - PAHs by GC/MS (SIM)								
Analyte		Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	1.2	U	3.7		ug/L		07/12/21 07:21	07/12/21 13:03	
2-Methylnaphthalene	0.62	U	0.69	0.62	ug/L		07/12/21 07:21	07/12/21 13:03	
1-Methylnaphthalene	0.59	U	0.69	0.59	ug/L		07/12/21 07:21	07/12/21 13:03	
Acenaphthylene	0.075		0.46	0.075	-		07/12/21 07:21	07/12/21 13:03	1
Acenaphthene	0.23		0.69		ug/L		07/12/21 07:21	07/12/21 13:03	
Fluorene	0.23		0.69		ug/L		07/12/21 07:21	07/12/21 13:03	
Phenanthrene	0.80		2.8		ug/L		07/12/21 07:21	07/12/21 13:03	
Anthracene	0.083		0.46	0.083			07/12/21 07:21	07/12/21 13:03	
Fluoranthene	0.22		0.69		ug/L		07/12/21 07:21	07/12/21 13:03	
Pyrene	0.21		0.46		ug/L		07/12/21 07:21	07/12/21 13:03	
Benzo[a]anthracene	0.046		0.19	0.046	-		07/12/21 07:21	07/12/21 13:03	
Chrysene	0.063		0.46	0.063			07/12/21 07:21	07/12/21 13:03	•
Benzo[b]fluoranthene	0.046		0.093	0.046	-		07/12/21 07:21	07/12/21 13:03	
Benzo[k]fluoranthene	0.077		0.46	0.077	-		07/12/21 07:21	07/12/21 13:03	
Benzo[a]pyrene	0.067		0.46	0.067			07/12/21 07:21	07/12/21 13:03	1
Benzo[g,h,i]perylene	0.064		0.46	0.064	-		07/12/21 07:21	07/12/21 13:03	
Indeno[1,2,3-cd]pyrene	0.046		0.19	0.046	-		07/12/21 07:21	07/12/21 13:03	
Dibenz(a,h)anthracene	0.071	U	0.19	0.071	ug/L		07/12/21 07:21	07/12/21 13:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
ourrogate									
2-methylnaphthalene-d10	74		19 - 110				07/12/21 07:21	07/12/21 13:03	1

Client Sample ID: MW28R

Date Collected: 07/08/21 13:28 Date Received: 07/09/21 15:50

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Petroleum Hydrocarbons	4800		1000	240	ug/L		07/12/21 07:12	07/12/21 19:05	1
(C8-C40)									
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Petroleum Hydrocarbons	4.8		1.0	0.24	mg/L		07/12/21 07:12	07/12/21 19:05	1
(C8-C40)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	133		66 - 139				07/12/21 07:12	07/12/21 19:05	1
n-C39	105		40 - 129				07/12/21 07:12	07/12/21 19:05	1
- Method: Field Sampling - Field S	Sampling								
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	6.3				SU			07/08/21 13:28	1
Field Temperature	29.2				Degrees C			07/08/21 13:28	1
Specific Conductance	240				uS/cm			07/08/21 13:28	1
Oxygen, Dissolved	0.50				mg/L			07/08/21 13:28	1
Turbidity	3.78				NTU			07/08/21 13:28	1

Job ID: 660-112079-1

Matrix: Water

Lab Sample ID: 660-112079-6

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 660-240249/6

Matrix: Water Analysis Batch: 240249

	МВ	МВ							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.25	U	1.0	0.25	ug/L			07/12/21 14:51	1
Ethylbenzene	0.27	U	1.0	0.27	ug/L			07/12/21 14:51	1
Toluene	0.24	U	1.0	0.24	ug/L			07/12/21 14:51	1
Xylenes, Total	0.50	U	4.0	0.50	ug/L			07/12/21 14:51	1
Methyl tert-butyl ether	0.44	U	2.0	0.44	ug/L			07/12/21 14:51	1
m-Xylene & p-Xylene	0.36	U	2.0	0.36	ug/L			07/12/21 14:51	1
o-Xylene	0.50	U	2.0	0.50	ug/L			07/12/21 14:51	1

	МВ	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102		70 - 130		07/12/21 14:51	1
Dibromofluoromethane	98		70 _ 130		07/12/21 14:51	1
4-Bromofluorobenzene	98		70 - 130		07/12/21 14:51	1

Lab Sample ID: LCS 660-240249/4 Matrix: Water Analysis Batch: 240249

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	10.0	9.82		ug/L		98	66 - 131	
Ethylbenzene	10.0	9.56		ug/L		96	77 - 117	
Toluene	10.0	10.0		ug/L		100	71 _ 119	
Methyl tert-butyl ether	10.0	8.80		ug/L		88	63 - 123	
m-Xylene & p-Xylene	10.0	9.31		ug/L		93	65 _ 130	
o-Xylene	10.0	9.56		ug/L		96	63 - 130	
				-				

	LCS LCS	
Surrogate	%Recovery Qualifi	er Limits
Toluene-d8 (Surr)	104	70 - 130
Dibromofluoromethane	100	70 - 130
4-Bromofluorobenzene	100	70 - 130

100

98

Lab Sample ID: 660-112083-C-1 MS Matrix: Water

Analysis Batch: 240249

Dibromofluoromethane

4-Bromofluorobenzene

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.25	U	10.0	9.54		ug/L		95	66 - 131
Ethylbenzene	0.27	U	10.0	9.53		ug/L		95	77 - 117
Toluene	0.24	U	10.0	9.20		ug/L		92	71 ₋ 119
Methyl tert-butyl ether	0.44	U	10.0	9.59		ug/L		96	63 - 123
m-Xylene & p-Xylene	0.36	U	10.0	9.50		ug/L		95	65 - 130
o-Xylene	0.50	U	10.0	9.12		ug/L		91	63 - 130
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						
Toluene-d8 (Surr)	101		70 - 130						

Furofins	TestAmerica	Tam

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

8

Client Sample ID: Matrix Spike

Prep Type: Total/NA

70 - 130

70 - 130

Prep Type: Total/NA

Client Sample ID: Duplicate

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 660-112052-A-1 DU

Matrix: Water Analysis Batch: 240249

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Benzene	0.25	U	0.25	U	ug/L		NC	30
Ethylbenzene	0.27	U	0.27	U	ug/L		NC	30
Toluene	0.24	U	0.24	U	ug/L		NC	30
Xylenes, Total	0.50	U	0.50	U	ug/L		NC	30
Methyl tert-butyl ether	0.44	U	0.44	U	ug/L		NC	30
m-Xylene & p-Xylene	0.36	U	0.36	U	ug/L		NC	30
o-Xylene	0.50	U	0.50	U	ug/L		NC	30

	DU	DU	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	101		70 _ 130
Dibromofluoromethane	103		70 - 130
4-Bromofluorobenzene	100		70 - 130

Lab Sample ID: MB 660-240325/6 Matrix: Water Analysis Batch: 240325

	MB	MB							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.25	U	1.0	0.25	ug/L			07/14/21 13:36	1
Ethylbenzene	0.27	U	1.0	0.27	ug/L			07/14/21 13:36	1
Toluene	0.24	U	1.0	0.24	ug/L			07/14/21 13:36	1
Xylenes, Total	0.50	U	4.0	0.50	ug/L			07/14/21 13:36	1
Methyl tert-butyl ether	0.44	U	2.0	0.44	ug/L			07/14/21 13:36	1
m-Xylene & p-Xylene	0.36	U	2.0	0.36	ug/L			07/14/21 13:36	1
o-Xylene	0.50	U	2.0	0.50	ug/L			07/14/21 13:36	1

	IVID					
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		70 - 130		07/14/21 13:36	1
Dibromofluoromethane	102		70 - 130		07/14/21 13:36	1
4-Bromofluorobenzene	101		70 - 130		07/14/21 13:36	1

MR MR

Lab Sample ID: LCS 660-240325/4 Matrix: Water

Analysis Batch: 240325

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	10.0	10.6		ug/L		106	66 - 131	
Ethylbenzene	10.0	10.2		ug/L		102	77 _ 117	
Toluene	10.0	10.3		ug/L		103	71 _ 119	
Methyl tert-butyl ether	10.0	9.70		ug/L		97	63 _ 123	
m-Xylene & p-Xylene	10.0	10.3		ug/L		103	65 _ 130	
o-Xylene	10.0	10.4		ug/L		104	63 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	99		70 - 130
Dibromofluoromethane	101		70 - 130
4-Bromofluorobenzene	101		70 - 130

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client Sample ID: Duplicate

Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 660-112139-C-2 MS

Matrix: Water nalveje Batch: 240325

Analyte	De su lá								
	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.25	U	10.0	10.8		ug/L		108	66 - 131
Ethylbenzene	0.27	U	10.0	11.4		ug/L		114	77 _ 117
Toluene	0.24	U	10.0	10.7		ug/L		107	71 ₋ 119
Methyl tert-butyl ether	0.44	U	10.0	9.80		ug/L		98	63 - 123
m-Xylene & p-Xylene	0.36	U	10.0	11.1		ug/L		111	65 _ 130
o-Xylene	0.50	U	10.0	10.7		ug/L		107	63 - 130

	1013	1015	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	98		70 - 130
Dibromofluoromethane	101		70 - 130
4-Bromofluorobenzene	99		70 - 130

Lab Sample ID: 660-112139-C-1 DU

Matrix: Water Analysis Batch: 240325

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Benzene	0.25	U	0.25	U	ug/L		NC	30
Ethylbenzene	0.27	U	0.27	U	ug/L		NC	30
Toluene	0.24	U	0.24	U	ug/L		NC	30
Xylenes, Total	0.50	U	0.50	U	ug/L		NC	30
Methyl tert-butyl ether	0.44	U	0.44	U	ug/L		NC	30
m-Xylene & p-Xylene	0.36	U	0.36	U	ug/L		NC	30
o-Xylene	0.50	U	0.50	U	ug/L		NC	30
	DU	DU						

	50	20	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	100		70 - 130
Dibromofluoromethane	103		70 _ 130
4-Bromofluorobenzene	97		70 - 130

Method: 8270D - PAHs by GC/MS (SIM)

Lab Sample ID: MB 660-240230/1-A Matrix: Water Analysis Batch: 240241

MB MB Analyte Result Qualifier PQL MDL Unit D Prepared Analyzed Dil Fac Naphthalene 1.3 U 4.0 1.3 ug/L 07/12/21 07:21 07/12/21 11:04 1 2-Methylnaphthalene 0.67 U 0.75 07/12/21 07:21 07/12/21 11:04 0.67 ug/L 1 1-Methylnaphthalene 0.64 U 0.75 0.64 ug/L 07/12/21 07:21 07/12/21 11:04 1 Acenaphthylene 07/12/21 11:04 0.081 U 0.50 0.081 ug/L 07/12/21 07:21 1 Acenaphthene 0.25 U 0.75 0.25 ug/L 07/12/21 07:21 07/12/21 11:04 1 Fluorene 0.25 U 0.75 0.25 ug/L 07/12/21 07:21 07/12/21 11:04 1 Phenanthrene 0.86 U 3.0 0.86 ug/L 07/12/21 07:21 07/12/21 11:04 1 Anthracene 0.090 U 0.50 0.090 ug/L 07/12/21 07:21 07/12/21 11:04 1 0.23 U Fluoranthene 0.75 0.23 ug/L 07/12/21 07:21 07/12/21 11:04 1 Pyrene 0.22 U 0.50 0.22 ug/L 07/12/21 07:21 07/12/21 11:04 1 Benzo[a]anthracene 0.050 U 0.20 0.050 ug/L 07/12/21 07:21 07/12/21 11:04 1

Eurofins TestAmerica, Tampa

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 240230

6

8

Method: 8270D - PAHs by GC/MS (SIM) (Continued)

Lab Sample ID: MB 660-24023	0/1-A							Client Sa	ample ID: Metho	
Matrix: Water									Prep Type:	
Analysis Batch: 240241									Prep Batch:	: 24023
	MB									
Analyte	Result		PQL	М	DL Unit		D F	Prepared	Analyzed	Dil Fa
Chrysene	0.068	U	0.50	0.0)68 ug/L		07/*	12/21 07:21	07/12/21 11:04	
Benzo[b]fluoranthene	0.050	U	0.10	0.0)50 ug/L		07/1	12/21 07:21	07/12/21 11:04	
Benzo[k]fluoranthene	0.083	U	0.50	0.0)83 ug/L		07/*	12/21 07:21	07/12/21 11:04	
Benzo[a]pyrene	0.073	U	0.50	0.0)73 ug/L		07/*	12/21 07:21	07/12/21 11:04	
Benzo[g,h,i]perylene	0.070	U	0.50	0.0)70 ug/L		07/*	12/21 07:21	07/12/21 11:04	
Indeno[1,2,3-cd]pyrene	0.050	U	0.20	0.0)50 ug/L		07/1	12/21 07:21	07/12/21 11:04	
Dibenz(a,h)anthracene	0.077	U	0.20	0.0)77 ug/L		07/*	12/21 07:21	07/12/21 11:04	
	МВ	МВ								
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
2-methylnaphthalene-d10	56		19 - 110				07/	12/21 07:21	07/12/21 11:04	
Fluoranthene-d10	59		35 - 140				07/	12/21 07:21	07/12/21 11:04	
Lab Sample ID: LCS 660-2402 Matrix: Water Analysis Batch: 240241									ID: Lab Control Prep Type: ⁻ Prep Batch:	Total/N
			Spike	LCS L	CS				%Rec.	
Analyte			Added	Result C	Qualifier	Unit	D	%Rec	Limits	
Naphthalene			20.0	13.1		ug/L		66	32 - 110	
2-Methylnaphthalene			20.0	12.2		ug/L		61	30 - 110	
1-Methylnaphthalene			20.0	12.3		ug/L		61	31 _ 110	
Acenaphthylene			20.0	14.5		ug/L		73	35 _ 110	
Acenaphthene			20.0	13.6		ug/L		68	35 - 110	
Fluorene			20.0	14.8		ug/L		74	38 - 110	
Phenanthrene			20.0	13.9		ug/L		70	39 - 110	
Anthracene			20.0	13.9		ug/L		69	38 - 110	
Fluoranthene			20.0	12.7		ug/L		63	41 - 110	
Pyrene			20.0	16.0		ug/L		80	46 - 110	
Benzo[a]anthracene			20.0	16.5		ug/L		82	47 - 110	
Chrysene			20.0	15.9		ug/L		79	48 - 110	
Benzo[b]fluoranthene			20.0	17.5		ug/L		88	47 - 110	
Benzo[k]fluoranthene			20.0	16.2		ug/L		81	44 - 110	
Benzo[a]pyrene			20.0	17.5		ug/L		87	45 - 110	
Benzo[g,h,i]perylene			20.0	17.2		ug/L		86	47 - 110	
Indeno[1,2,3-cd]pyrene			20.0	16.1		ug/L		81	47 - 112	
			20.0	10.1		~9, L		01		

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2-methylnaphthalene-d10	67		19 - 110
Fluoranthene-d10	68		35 - 140

Dibenz(a,h)anthracene

Lab Sample ID: 660-112085-A- Matrix: Water	1-E MS							Client	Prep	D: Matrix Spike Type: Total/NA
Analysis Batch: 240241	Sample	Sample	Spike	MS	MS				Prep %Rec.	Batch: 240230
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	
Naphthalene	1.2	U	20.0	12.5		ug/L		62	32 - 110	
2-Methylnaphthalene	0.62	U	20.0	11.7		ug/L		59	30 _ 110	
1-Methylnaphthalene	0.59	U	20.0	11.8		ug/L		59	31 _ 110	

20.0

16.4

ug/L

82

47 _ 110

Job ID: 660-112079-1

Method: 8270D - PAHs by GC/MS (SIM) (Continued)

Lab Sample ID: 660-112085-A-1-E MS Matrix: Water

Analysis Batch: 240241									Prep Batch: 24	0230
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthylene	0.075	U	20.0	13.8		ug/L		69	35 - 110	
Acenaphthene	0.23	U	20.0	13.0		ug/L		65	35 - 110	
Fluorene	0.23	U	20.0	14.1		ug/L		70	38 - 110	
Phenanthrene	0.80	U	20.0	13.5		ug/L		68	39 - 110	
Anthracene	0.083	U	20.0	13.5		ug/L		68	38 - 110	
Fluoranthene	0.22	U	20.0	12.8		ug/L		64	41 ₋ 110	
Pyrene	0.21	U	20.0	16.2		ug/L		81	46 - 110	
Benzo[a]anthracene	0.046	U	20.0	16.7		ug/L		83	47 _ 110	
Chrysene	0.063	U	20.0	16.1		ug/L		80	48 - 110	
Benzo[b]fluoranthene	0.046	U	20.0	17.8		ug/L		89	47 ₋ 110	
Benzo[k]fluoranthene	0.077	U	20.0	16.2		ug/L		81	44 _ 110	
Benzo[a]pyrene	0.067	U	20.0	17.7		ug/L		88	45 - 110	
Benzo[g,h,i]perylene	0.064	U	20.0	17.4		ug/L		87	47 ₋ 110	
Indeno[1,2,3-cd]pyrene	0.046	U	20.0	16.4		ug/L		82	47 ₋ 112	
Dibenz(a,h)anthracene	0.071	U	20.0	16.6		ug/L		83	47 _ 110	
	MS	MS								

	1//3	N/S	
Surrogate	%Recovery	Qualifier	Limits
2-methylnaphthalene-d10	65		19 - 110
Fluoranthene-d10	69		35 - 140

Lab Sample ID: 660-112085-A-1-F MSD Matrix: Water

Analysis Batch: 240241

Analysis Batch: 240241									Prep l	Batch: 2	40230
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	1.2	U	20.0	11.0		ug/L		55	32 _ 110	13	35
2-Methylnaphthalene	0.62	U	20.0	10.3		ug/L		51	30 _ 110	13	30
1-Methylnaphthalene	0.59	U	20.0	10.2		ug/L		51	31 _ 110	14	25
Acenaphthylene	0.075	U	20.0	12.1		ug/L		61	35 - 110	13	25
Acenaphthene	0.23	U	20.0	11.3		ug/L		56	35 _ 110	14	25
Fluorene	0.23	U	20.0	12.7		ug/L		64	38 _ 110	10	25
Phenanthrene	0.80	U	20.0	13.1		ug/L		65	39 _ 110	4	27
Anthracene	0.083	U	20.0	13.2		ug/L		66	38 _ 110	3	24
Fluoranthene	0.22	U	20.0	13.0		ug/L		65	41 - 110	1	24
Pyrene	0.21	U	20.0	16.7		ug/L		83	46 _ 110	3	21
Benzo[a]anthracene	0.046	U	20.0	17.3		ug/L		87	47 _ 110	4	19
Chrysene	0.063	U	20.0	16.6		ug/L		83	48 _ 110	3	20
Benzo[b]fluoranthene	0.046	U	20.0	18.5		ug/L		92	47 _ 110	4	20
Benzo[k]fluoranthene	0.077	U	20.0	16.7		ug/L		84	44 - 110	3	20
Benzo[a]pyrene	0.067	U	20.0	18.3		ug/L		92	45 _ 110	3	20
Benzo[g,h,i]perylene	0.064	U	20.0	18.0		ug/L		90	47 - 110	3	21
Indeno[1,2,3-cd]pyrene	0.046	U	20.0	17.2		ug/L		86	47 _ 112	4	21
Dibenz(a,h)anthracene	0.071	U	20.0	17.2		ug/L		86	47 _ 110	4	22
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
2-methylnaphthalene-d10	56		19 _ 110								

2-methylnaphthalene-d10	56	19 - 110
Fluoranthene-d10	69	35 - 140

Client Sample ID: Matrix Spike Prep Type: Total/NA

		%Rec.		RPD
D	%Rec	Limits	RPD	Limit

Method: FL-PRO Micro - Florida - Petroleum Range Organics (GC)

Lab Sample ID: MB 660-2402	2211 2-A								Client Sa	mple ID: Metho	
Matrix: Water										Prep Type:	
Analysis Batch: 240244										Prep Batch	: 240227
		з мв									
Analyte		t Qualifier	PQ	_	MDL Un	-	_ <u>D</u>		repared	Analyzed	Dil Fac
Total Petroleum Hydrocarbons (C8-C40)	24	0 U	100	0	240 ug/	L		07/1	2/21 07:12	07/12/21 16:15	1
	M	В МВ									
Analyte	Resu		PQ	L	MDL Un	t	D	P	repared	Analyzed	Dil Fac
Total Petroleum Hydrocarbons (C8-C40)	0.2	4 U	1.	D	0.24 mg	/L		07/1	2/21 07:12	07/12/21 16:15	
	M	B MB									
Surrogate	%Recover	y Qualifier	Limits					Р	repared	Analyzed	Dil Fac
o-Terphenyl	12	8	66 - 139	_				07/1	2/21 07:12	07/12/21 16:15	1
n-C39	9	3	40 - 129					07/1	2/21 07:12	07/12/21 16:15	1
Lab Sample ID: LCS 660-240)227/1-A						C	lient	Sample I	ID: Lab Control	Sample
Matrix: Water										Prep Type:	Total/NA
Analysis Batch: 240244										Prep Batch	: 240227
			Spike	LCS	LCS					%Rec.	
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits	
Total Petroleum Hydrocarbons			24300	27000		ug/L			111	65 - 119	
(C8-C40)											
			Spike		LCS			_	~	%Rec.	
Analyte			Added		Qualifier				%Rec	Limits	
Total Petroleum Hydrocarbons			24	27.0		mg/L			111	65 - 119	
(C8-C40)											
	LCS LC	S									
Surrogate	%Recovery Qu	alifier	Limits								
o-Terphenyl	128		66 - 139								
n-C39	100		40 - 129								
Lab Sample ID: 660-112079-	1 MS									Client Sample	
Matrix: Water										Prep Type:	
Analysis Batch: 240244										Prep Batch	: 240227
	Sample Sa	•	Spike	MS	MS					%Rec.	
Analyte	Result Qu	alifier	Added		Qualifier				%Rec	Limits	
Total Petroleum Hydrocarbons	240 U		24200	27600		ug/L			114	65 - 123	
(C8-C40)	Sample Sa	mplo	Spike	Ме	MS					%Rec.	
Analyte	Result Qu	•	Added		Qualifier	Unit		D	%Rec	Limits	
Total Petroleum Hydrocarbons			24	27.6	Guaimer	mg/L				65 - 123	
(C8-C40)	0.24 0		24	21.0		my/L			114	00 - 120	
	MS MS										
Surrogate	%Recovery Qu	alifier	Limits								
o-Terphenyl	138		66 - 139								
n-C39	115		40 - 129								

Method: FL-PRO Micro - Florida - Petroleum Range Organics (GC) (Continued)

Lab Sample ID: 660-112079-	2 DU							Client Sample ID	: MW6
Matrix: Water								Prep Type: To	tal/NA
Analysis Batch: 240244								Prep Batch: 2	40227
	Sample	Sample		DU	DU				RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D	RPD	Limit
Total Petroleum Hydrocarbons	240	U		240	U	ug/L		NC	20
(C8-C40)									
	Sample	Sample		DU	DU				RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D	RPD	Limit
Total Petroleum Hydrocarbons	0.24	U		0.24	U	mg/L		NC	20
(C8-C40)									
	DU	DU							
Surrogate	%Recovery	Qualifier	Limits						
o-Terphenyl	116		66 - 139						
n-C39	90		40 - 129						

1 2 3 4 5 6 7 8 9

14

Analysis Batch: 240249

GC/MS VOA

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
660-112079-1	MW5	Total/NA	Water	8260B	
660-112079-2	MW6	Total/NA	Water	8260B	
660-112079-3	MW7R	Total/NA	Water	8260B	
660-112079-4	MW8	Total/NA	Water	8260B	
MB 660-240249/6	Method Blank	Total/NA	Water	8260B	
LCS 660-240249/4	Lab Control Sample	Total/NA	Water	8260B	
660-112083-C-1 MS	Matrix Spike	Total/NA	Water	8260B	
660-112052-A-1 DU	Duplicate	Total/NA	Water	8260B	
nalysis Batch: 24032	5				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
660-112079-5	MW12R	Total/NA	Water	8260B	

Lab Sample ID	Client Sample ID	Prep Type	watrix	Method	Ргер Бассп
660-112079-5	MW12R	Total/NA	Water	8260B	
660-112079-6	MW28R	Total/NA	Water	8260B	
MB 660-240325/6	Method Blank	Total/NA	Water	8260B	
LCS 660-240325/4	Lab Control Sample	Total/NA	Water	8260B	
660-112139-C-2 MS	Matrix Spike	Total/NA	Water	8260B	
660-112139-C-1 DU	Duplicate	Total/NA	Water	8260B	
_					

GC/MS Semi VOA

Analysis Batch: 240224

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
660-112079-2	MW6	Total/NA	Water	8270D	240230
660-112079-3	MW7R	Total/NA	Water	8270D	240230
660-112079-4	MW8	Total/NA	Water	8270D	240230
660-112079-5	MW12R	Total/NA	Water	8270D	240230
660-112079-6	MW28R	Total/NA	Water	8270D	240230

Prep Batch: 240230

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
660-112079-1	MW5	Total/NA	Water	3510C	
660-112079-2	MW6	Total/NA	Water	3510C	
660-112079-3	MW7R	Total/NA	Water	3510C	
660-112079-4	MW8	Total/NA	Water	3510C	
660-112079-5	MW12R	Total/NA	Water	3510C	
660-112079-6	MW28R	Total/NA	Water	3510C	
MB 660-240230/1-A	Method Blank	Total/NA	Water	3510C	
LCS 660-240230/2-A	Lab Control Sample	Total/NA	Water	3510C	
660-112085-A-1-E MS	Matrix Spike	Total/NA	Water	3510C	
660-112085-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Water	3510C	

Analysis Batch: 240241

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
660-112079-1	MW5	Total/NA	Water	8270D	240230
MB 660-240230/1-A	Method Blank	Total/NA	Water	8270D	240230
LCS 660-240230/2-A	Lab Control Sample	Total/NA	Water	8270D	240230
660-112085-A-1-E MS	Matrix Spike	Total/NA	Water	8270D	240230
660-112085-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Water	8270D	240230

GC Semi VOA

Prep Batch: 240227

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
660-112079-1	MW5	Total/NA	Water	MicroExt Prep	1
660-112079-2	MW6	Total/NA	Water	MicroExt Prep	
660-112079-3	MW7R	Total/NA	Water	MicroExt Prep	
660-112079-4	MW8	Total/NA	Water	MicroExt Prep	
660-112079-5	MW12R	Total/NA	Water	MicroExt Prep	
660-112079-6	MW28R	Total/NA	Water	MicroExt Prep	
MB 660-240227/2-A	Method Blank	Total/NA	Water	MicroExt Prep	
LCS 660-240227/1-A	Lab Control Sample	Total/NA	Water	MicroExt Prep	
660-112079-1 MS	MW5	Total/NA	Water	MicroExt Prep	
660-112079-2 DU	MW6	Total/NA	Water	MicroExt Prep	

Analysis Batch: 240244

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
660-112079-1	MW5	Total/NA	Water	FL-PRO Micro	240227
660-112079-2	MW6	Total/NA	Water	FL-PRO Micro	240227
660-112079-3	MW7R	Total/NA	Water	FL-PRO Micro	240227
660-112079-4	MW8	Total/NA	Water	FL-PRO Micro	240227
660-112079-5	MW12R	Total/NA	Water	FL-PRO Micro	240227
660-112079-6	MW28R	Total/NA	Water	FL-PRO Micro	240227
MB 660-240227/2-A	Method Blank	Total/NA	Water	FL-PRO Micro	240227
_CS 660-240227/1-A	Lab Control Sample	Total/NA	Water	FL-PRO Micro	240227
660-112079-1 MS	MW5	Total/NA	Water	FL-PRO Micro	240227
660-112079-2 DU	MW6	Total/NA	Water	FL-PRO Micro	240227

Field Service / Mobile Lab

Analysis Batch: 240278

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
660-112079-1	MW5	Total/NA	Water	Field Sampling	
660-112079-2	MW6	Total/NA	Water	Field Sampling	
660-112079-3	MW7R	Total/NA	Water	Field Sampling	
660-112079-4	MW8	Total/NA	Water	Field Sampling	
660-112079-5	MW12R	Total/NA	Water	Field Sampling	
660-112079-6	MW28R	Total/NA	Water	Field Sampling	

Client Sample ID: MW5 Date Collected: 07/08/21 11:25

Date Received: 07/09/21 15:50

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	240249	07/12/21 21:19	K1P	TAL TAM
Total/NA	Prep	3510C			240230	07/12/21 07:21	JP	TAL TAM
Total/NA	Analysis	8270D		1	240241	07/12/21 13:50	K1P	TAL TAM
Total/NA	Prep	MicroExt Prep			240227	07/12/21 07:12	MDS	TAL TAM
Total/NA	Analysis	FL-PRO Micro		1	240244	07/12/21 16:37	MDS	TAL TAM
Total/NA	Analysis	Field Sampling		1	240278	07/08/21 11:25	FS	TAL TAM

Client Sample ID: MW6

Date Collected: 07/08/21 11:56 Date Received: 07/09/21 15:50

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	240249	07/12/21 22:18	K1P	TAL TAM
Total/NA	Prep	3510C			240230	07/12/21 07:21	JP	TAL TAM
Total/NA	Analysis	8270D		1	240224	07/12/21 11:42	MWJ	TAL TAM
Total/NA	Prep	MicroExt Prep			240227	07/12/21 07:12	MDS	TAL TAM
Total/NA	Analysis	FL-PRO Micro		1	240244	07/12/21 17:19	MDS	TAL TAM
Total/NA	Analysis	Field Sampling		1	240278	07/08/21 11:56	FS	TAL TAM

Client Sample ID: MW7R

Date Collected: 07/08/21 12:24 Date Received: 07/09/21 15:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	240249	07/12/21 21:58	K1P	TAL TAM
Total/NA	Prep	3510C			240230	07/12/21 07:21	JP	TAL TAM
Total/NA	Analysis	8270D		1	240224	07/12/21 12:02	MWJ	TAL TAM
Total/NA	Prep	MicroExt Prep			240227	07/12/21 07:12	MDS	TAL TAM
Total/NA	Analysis	FL-PRO Micro		1	240244	07/12/21 18:01	MDS	TAL TAM
Total/NA	Analysis	Field Sampling		1	240278	07/08/21 12:24	FS	TAL TAM

Client Sample ID: MW8

Date Collected: 07/08/21 10:54 Date Received: 07/09/21 15:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	240249	07/12/21 21:39	K1P	TAL TAM
Total/NA	Prep	3510C			240230	07/12/21 07:21	JP	TAL TAM
Total/NA	Analysis	8270D		1	240224	07/12/21 12:22	MWJ	TAL TAM
Total/NA	Prep	MicroExt Prep			240227	07/12/21 07:12	MDS	TAL TAM
Total/NA	Analysis	FL-PRO Micro		1	240244	07/12/21 18:23	MDS	TAL TAM
Total/NA	Analysis	Field Sampling		1	240278	07/08/21 10:54	FS	TAL TAM

Lab Sample ID: 660-112079-1 Matrix: Water

Lab Sample ID: 660-112079-2

Matrix: Water

Matrix: Water

Matrix: Water

ab

Lab Sample ID: 660-112079-3

Lab Sample ID: 660-112079-4

7/16/2021

Client Sample ID: MW12R Date Collected: 07/08/21 12:59

Date Received: 07/09/21 15:50

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	240325	07/14/21 18:09	K1P	TAL TAM
Total/NA	Prep	3510C			240230	07/12/21 07:21	JP	TAL TAM
Total/NA	Analysis	8270D		1	240224	07/12/21 12:43	MWJ	TAL TAM
Total/NA	Prep	MicroExt Prep			240227	07/12/21 07:12	MDS	TAL TAM
Total/NA	Analysis	FL-PRO Micro		1	240244	07/12/21 18:44	MDS	TAL TAM
Total/NA	Analysis	Field Sampling		1	240278	07/08/21 12:59	FS	TAL TAM

Client Sample ID: MW28R Date Collected: 07/08/21 13:28

Date Received: 07/09/21 15:50

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	240325	07/14/21 18:29	K1P	TAL TAM
Total/NA	Prep	3510C			240230	07/12/21 07:21	JP	TAL TAM
Total/NA	Analysis	8270D		1	240224	07/12/21 13:03	MWJ	TAL TAM
Total/NA	Prep	MicroExt Prep			240227	07/12/21 07:12	MDS	TAL TAM
Total/NA	Analysis	FL-PRO Micro		1	240244	07/12/21 19:05	MDS	TAL TAM
Total/NA	Analysis	Field Sampling		1	240278	07/08/21 13:28	FS	TAL TAM

Laboratory References:

TAL TAM = Eurofins TestAmerica, Tampa, 6712 Benjamin Road, Suite 100, Tampa, FL 33634, TEL (813)885-7427

Lab Sample ID: 660-112079-5 Matrix: Water

Lab Sample ID: 660-112079-6

Matrix: Water

Client: MDM Services Project/Site: Combs Oil Company

Vethod	Method Description	Protocol	Laboratory
3260B	Volatile Organic Compounds (GC/MS)	SW846	TAL TAM
3270D	PAHs by GC/MS (SIM)	SW846	TAL TAM
L-PRO Micro	Florida - Petroleum Range Organics (GC)	FL-DEP	TAL TAM
ield Sampling	Field Sampling	EPA	TAL TAM
510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	TAL TAM
030B	Purge and Trap	SW846	TAL TAM
licroExt Prep	Microextraction	SW846	TAL TAM

Protocol References:

EPA = US Environmental Protection Agency

FL-DEP = State Of Florida Department Of Environmental Protection, Florida Administrative Code.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL TAM = Eurofins TestAmerica, Tampa, 6712 Benjamin Road, Suite 100, Tampa, FL 33634, TEL (813)885-7427

Accreditation/Certification Summary

12 13

Laboratory: Eurofins TestAmerica, Tampa Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. Authority Identification Number Expiration Date Program Florida NELAP E84282 06-30-22 5 The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification. Analysis Method Prep Method Matrix Analyte Field Sampling Water Field pH Field Sampling Field Temperature Water Field Sampling Water Oxygen, Dissolved Field Sampling Water Specific Conductance Field Sampling Water Turbidity

Eurofins TestAmerica, Tampa 6712 Benjamin Road Suite 100

Chain of Custody Record

Tampa, FL 33634 Phone: 813-885-7427 Fax: 813-885-7049

Clent Contract: Jeff Morgan Company: MDM Services MDM	ation	Sampler: Derek Drows	Lab PM: Jones, Matt	Carrier Tracking No(s):	COC No: 660-100555-32178.1
Company MDM Services PWSID Analysis Requested Dot # D & # J & J &		Phone:	E-Mail:	State of Origin:	Page:
Address: Due Date Requested: Preservation Codes: City: TAT Requested (days):		PWSID:			
City: Lakeland TAT Requested (days): TAT Requested (days): A - ACL M - Hexne More Lakeland State. 7p: FL, 33805 Compliance Project: Δ Yes Δ No Point Point <td< td=""><td>load</td><th>Due Date Requested:</th><td></td><td></td><td></td></td<>	load	Due Date Requested:			
State. Zp: FL, 33805 Compliance Project: Δ Yes Δ No Power D - Ninc Add P - Na2045 E - Na1504 Q - Na2203 F - Na2504 Q - Na2203 E - Na1504 Q - Na2203 F - Na1504 Q - Na2203 G - Amotor A - Na2503 G - Amotor S - HZS04 G - HZS04		TAT Requested (days):			
Sample Identification Sample Date Sample Time Sample Type Matrix (Www.str., Second), Generation, Generati		-	e		D - Nitric Acid P - Na2O4S
Sample Identification Sample Date Sample Time Sample Type Matrix (Www.str., Second), Generation, Generati		PO #:			F - MeOH R - Na2S2O3
Sample Identification Sample Date Sample Time Sample Time Matrix (Wwweter, Stell) With Ut of the stell Other: Sample Identification Sample Date Time Sample Tim			Hydro No		H - Ascorbic Acid T - TSP Dodecahydrate
Sample Identification Sample Date Sample Time Sample Time Matrix (Wwweter, Stell) With Ut of the stell Other: Sample Identification Sample Date Time Sample Tim	mservices.com		matic No)	2	J - DI Water V - MCAA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	bany	66016498		ntain	L - EDA Z - other (specify)
Sample Identification Sample Date Type (C=comp, G=grab) Type (C=comp, errised,		SSOW#:	Samp Samp Lycycl TRPH TRPH		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	cation	Sample (W=w S=sec Sample (C=comp, O=was		Number	
MWG F/S/U 17:24 G. W XXXX J. J. X.					
MWTR 7/8/21 12:24 G. W XXXX ST			XXXX		t In
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ما در				1 × ×
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	wFR	1/0	, <u>XXXX</u>		X X
$\frac{M_{W}}{24} = \frac{118/21}{2184} \frac{12:54}{218} \frac{C}{24} = \frac{118}{24} \frac{C}{24} \frac{C}{24} = \frac{118}{24} \frac{C}{24} $	~ {				1.5
MWZFK 7/8/U 13:27 Cg W AKXXX	WIZR	10/0/ 4			R v
	w ZFK	7/8/4 13:24 9	AK XK		
					Son t
					Rat
					0.2 -
660-112079 Chain of Custody			660-112079 Chain of Custod		
Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Non-Hazard Flammable Skin Irritant Poison B Unknown Radiological Return To Client Disposal By Lab Archive For Months Deliverable Requested: 1, III, III, IV, Other (specify) Special Instructions/QC Requirements: Special Instructions/QC Requirements:	d 💭 Flammable 💭 Skin Irritant 💭 Poi	ison B Unknown Radiological	Return To Client	Disposal By Lab 🛛 🖓 Arcl	
Empty Kit Relinquished by: Date: Date: Time: 8:121 Method of Shipment: Caused	uished by:	Date:	Time: 2:121	Method of Shipment:	124.9/
		Date/Time:			
Relinquished by: Date/Time: Company Received by: Date/Time: Company		Date/Time: Compar			
Relinquished by: Date/Time: Company Received by: Date/Time: Company		Date/Time: Compar	iy Received by:	Date/Time:	Company
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No			Cooler Temperature(s) °C and Other Re	emarks: (11-010	λ
Ver: 11/01/2020					

ω

7/16/2021

Eurofins TestAmerica, Tampa

6712 Benjamin Road Suite 100 Tampa, FL 33634 Phone: 813-885-7427 Fax: 813-885-7049

Chain of Custody Record

eurofins Environment Testing America

Client Information (Sub Contract Lab)	Sampler:				PM:							Carrie	Trackir	ng No(s):			COC No:		
Client Contact:	Phone:			Jor E-M	nes, M	Matt												660-130782.1		
Shipping/Receiving						vione	es@	eurofinset	com				of Origin					Page:		
^{Company:} TestAmerica Laboratories, Inc.								Required (Se				Florid				_		Page 1 of 1		
Address:	Due Date Request				NE	NELAP - Florida											660-112079-1			
3355 McLemore Drive, ,	7/18/2021								Ana	alvsis	Rec		ba					Preservation Code	es:	
^{City:} Pensacola	TAT Requested (da	FAT Requested (days):				Analysis F												A - HCL B - NaOH	M - Hexane N - None	
State, Zip: FL, 32514																		C - Zn Acetate D - Nitric Acid	O - AsNaO2 P - Na2O4S	
Phone: 850-474-1001(Tel) 850-478-2671(Fax)	PO #:						TPHCWG (Hold)											E - NaHSO4 F - MeOH	Q - Na2SO3 R - Na2S2O3	
Email:	WO #:				or No)	-	HCWG											G - Amchlor H - Ascorbic Acid I - Ice	S - H2SO4 T - TSP Dode U - Acetone	cahydrate
Project Name:	Project #:				- 2	No.	E											J - DI Water K - EDTA	V - MCAA	
Combs Oil Company Site:	66016498				ž	8	Pre			Ì								L-EDA	W - pH 4-5 Z - other (spec	cify)
Site:	SSOW#:				amply	SD (Ye	NG_W											Other:	(
		Sample	Sample Type (C=comp,	Matrix (w=water, S=solid, 0=waste/oil,	d Filtered S	form MS/M	TPHCWG/TPHCWG_W_Prep										Number of			
Sample Identification - Client ID (Lab ID)	Sample Date	Time		BT=Tissue, A=Ali	,) 문	Per	Ē										Total	Special Inc		
	> <	> <	Preserva	ation Code:	X	X											₹†	Special Ins	structions/N	lote:
MW5 (660-112079-1)	7/8/21	11:25 Eastern		Water	Π		X									-	3			
MW6 (660-112079-2)	7/8/21	11:56 Eastern		Water	П		X						_		++		3			
MW7R (660-112079-3)	7/8/21	12:24 Eastern		Water			x		-		1			+-	+		3			
MW8 (660-112079-4)	7/8/21	10:54 Eastern		Water	11	\vdash	x		+		+	$\left \right $	+	+	+	-	3			
MW12R (660-112079-5)	7/8/21	12:59 Eastern		Water			x		+		+	$\left \right $			┝╌┼		3			
MW28R (660-112079-6)	7/8/21	13:28 Eastern		Water	+		x		+			-			++	-+-	3			
		Lusien			╉┨		-	-+-+	+		+	┝─┼			++	-	3			
									+		+	\vdash		+	+	-	-			
					+		-		+		+	- +	_		+		_			
Note: Since laboratory accreditations are subject to change, Eurofins TestAmerica maintain accreditation in the State of Origin listed above for analysis/tests/matrix b TestAmerica attention immediately. If all requested accreditations are current to d	places the ownershi eing analyzed, the sa ate, return the signed	p of method, ar amples must be d Chain of Cust	nalyte & accre e shipped back ody attesting t	ditation compli k to the Eurofin to said complic	iance uns Test cance t	upon c tAmeri to Euro	out su rica la rofins	ubcontract lat boratory or o TestAmerica	orator	ries. This	s samp ns will b	le shipr le provi	nent is f ded. An	orwarde y chang	ed under ges to ac	chain	n-of-c tation	ustody. If the laborat status should be bro	tory does not crought to Eurofin	urrently s
Possible Hazard Identification						Sam	nple	Disposal		e mai	/ ho a	55055	od if					d longer than 1 i		
Unconfirmed							Í,	eturn To C	lient		Õ,	Jionas	al By L	ampl	es are					
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Delivera	able Rank: 2	2			Spec	cial I	Instruction	s/QC	Requi	remer	nspos	ai By L	ab		Ar	rchi	ve For	Months	
Empty Kit Relinquished by:		Date:			Tin	ne:							fethod of	of Shipn	nent:		_			
	Date/Time:	2117	0)	Company	0	F	Recei	ved by:	Tra	th	10	110		Date	/Time: 🛶	וזר	7	11/1130	Company	
Relinquished by:	Date/Time:	1.1.		Company	15	F	Recei	ved by:	UN	54/1	WU	145	/	Date	/Time:	$/ll_{i}$	51	21439		
Relinquished by:	Date/Time:			Company	_	F	Recei	ved by:							/Time:				Company	
Custody Seals Intact: Custody Seal No.:																			Company	
Δ Yes Δ No							20016	r Temperatur	e(s) '(and Ot	iner Re	marks:	5.	700	117	g				
																			Ver: 11/01/2	020

Well No.	Facility ID	Facility Name		Results	
mo		Combo dil	рН	64	SU
			Temperature, Water	30.5	Deg C
			Specific Conductance	0.40	ms/cm
			Dissolved Oxygen	(.00	mg/l
			Turbidity	8.77	NTU
mulo			pН	64	SU
			Temperature, Water	30.0	Deg C
			Specific Conductance	6.49	ms/cm
	<u> </u>		Dissolved Oxygen	1.24	mg/l
			Turbidity	5.05	NTU
NWAR			рН	6.5	SU
CWRC			Temperature, Water	30.2	Deg C
			Specific Conductance	0.44	ms/cm
			Dissolved Oxygen	0.78	
			Turbidity	17.78	mg/l NTU
nwr			pH	4.3	SU
riw.				29.6	
			Temperature, Water	6.45	Deg C
			Specific Conductance		ms/cm
			Dissolved Oxygen	1.4/	mg/l
mille			Turbidity	6.74	NTU
awige			pH	6.5	SU
			Temperature, Water	281	Deg C
			Specific Conductance	0.41	ms/cm
			Dissolved Oxygen	0.41	mg/l
2 21 64			Turbidity	3.15	NTU
n~ Don			На	6.3	SU
			Temperature, Water	29.2	Deg C
			Specific Conductance	0.24	ms/cm
			Dissolved Oxygen	0.50	mg/l
			Turbidity	3.75	NTU
			1		SU
					nog(
					<u> </u>
					<u>/ </u>
			660-112079 Field Shee		J
			Shee	t	660
			Temperature, Water	1	∋g L
			Specific Conductance		ms/cm
			Dissolved Oxygen		mg/l
			Turbidity		NTU
			pН		SU
			Temperature, Water		Deg C
			Specific Conductance		ms/cm
			Dissolved Oxygen		mg/i
			Turbidity		NTU
			pH		SU
			Temperature, Water		Deg C
			Specific Conductance		ms/cm
			Dissolved Oxygen		mg/l
			Turbidity		NTU

Login Sample Receipt Checklist

Client: MDM Services

Login Number: 112079 List Number: 1

List Number: 1 Creator: Ratchford, Hunter		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

Job Number: 660-112079-1

List Source: Eurofins TestAmerica, Tampa

Residual Chlorine Checked.

N/A

SITE NAME: CO	mbe Oil					SITE LOCATION: 525 E Main St, Immokalee, FL									
WELL NO:				SAMPLE	ן NN: DI: NN			.J E		T			1.10		
WELL NO: I	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			SAMPLE			ING DA	ΓΔ			DATE.	1	1/2/21		
WELL		TUBING			LL SCRE	EN IN	ITERVAL		STATIC D			URGE	PUMP TY	PE	
DIAMETER		DIAMET	ER (inches): (et to 11 feet				<u>ہ</u>	R BAI	LER: PP		
(only fill out i		1 WELL VOLU			1 - 318				K) A VVE				24		
FOURMENT		RGE: 1 EQUIP	= (MENT VOL =		feet -		-5 Z) X TUBIN	0.65 ga	allons/foot		2.41 INAE	gallons	
(only fill out i			=	galions + (uniç	gallons/foot			feet) +	gallons		gallons		
INITIAL PUN		5-5-	FINAL PUN	P OR TUBING	1.5		PURGING	3		PURGING		T	OTAL VOLI	JME	
DEPTH IN W	/ELL (feet):	<i>(</i> ')	DEPTH IN Y	WELL (feet):	<i>∢ -)</i>				<u> </u>	DISSOLVED	11:25	P	URGED (ga T	allons): 4.50	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standa units)		ТЕМР . (⁰ С)	(circ μm <u>or</u>	COND. cle units) hos/cm mS/cm	OXYGEN (circle units) Mg/L <u>or</u> % saturation	TURBII (NTU		COLOF (describe		
11:19	3.00	5.00	125	665	6.4		30.5		.40	1.10	10.0		lier	None	
11:22	.75	3.75	.25	6.65	6.4		30.5		40	1.09	9.4		-		
11:25	.75	4.50	-25	6.65	6.4	\rightarrow	30.5	C	240	1.00	5.77	,			
			+		1								1		
			-	+	1								1		
													1		
				411 - 0.04			811 - 0.40	8.1						5.00	
		Per Foot): 0.7 ACITY (Gal./Ft.			.25" = 0.0 0.0014;		2 " = 0.16; 1 " = 0.0026;		= 0.37; 4" 6" = 0.004;	' = 0.65; 5" = 3/8" = 0.006;		' = 1.4 0.010			
PURGING E	QUIPMENT CO	ODES: B =	Bailer; Bl	P = Bladder Pu			= Electric Sub		ible Pump;	PP = Perista	itic Pump;	C	= Other (S	pecify)	
SAMPLED E	Y (PRINT) / AI	FILIATION:	T	SAMPLER(8)			LING DA			Ť		T			
	, -) `		_	\rightarrow	SAMPLING	1 de		SAMPLING	3 1: //:31	
Derek Da	avis/MDM			TUBING			L		EIELD-	FILTERED: Y	·////////	<u> </u>	ILTER SIZ		
DEPTH IN V		-5-1		MATERIAL C	ODE: HD	PE				n Equipment Typ			ILIER SIZI	<u></u> μπ	
FIELD DEC		N: PUMP	Y <u>N</u>		TUBING	Y	<u>N</u> (repla	ced)		DUPLICATE:	Y		N		
	1	ER SPECIFICAT	TION				TION (includi	ng we	-					SAMPLE PUMP	
SAMPLE ID CODE	# CONTAIN ERS	MATERIAL CODE	VOLUME	PRESERVAT USED			OTAL VOL D IN FIELD (r	nL)	FINAL pH	ANALYSIS A METHO	D	C		FLOW RATE (mL per minute)	
MW-5	3	CG	40mL	HCL						BTEX/M	rbe		APP	300	
MW-5 MW-5	1	AG AG	250mL 250mL	NaThio H2SO4						PAH TRPF				<u></u>	
MW-5	3	CG	250mL 40mL	HCL						VPH				200	
MW-5	1	AG	1000mL	lce						EPH				707	
	+ '		TOOTHE					-+					11		
REMARKS								_	5						
ORP =	068														
MATERIAL	CODES:	AG = Amber Gl S = Silicone;		Clear Glass; O = Other (Sp		High	Density Poly	ethyle	ene; LDF	PE = Low Density	Polyethyle	ene;	PP = Poly	vpropylene;	
SAMPLING	EQUIPMENT			ough) Peristalt Flow Peristalti			B = Bailer; VI = Straw Me		= Bladder P Tubing Grav		Electric Su = Other (\$		ible Pump; /)		
NOTES:	1. The abov	e do not con	stitute all of	f the informa	tion req	uire	d by Chapt	er 62	-160, F.A.	C.					

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: COI						SIT	_		Main	Ct. Immel		CI		
WELL NO: N				CAM				20 E		<u>St, Immol</u>	DATE:		Shi	
WELL NO: W	100-0			SAM			ING DA	ТΔ	1.1.1.1	·	DATE.	7/	Ma	
WELL		TUBING	;	T	WELL SCP				STATIC DE			PURG		PE
DIAMETER (i		DIAMET	ER (inches): (0.25	DEPTH:	1.5 fe	et to 11 fee	et 📘	TO WATER	R (feet): 6-30		OR BA	ILER: PP	
(only fill out if		1 WELL VOLU	JME = (TOTA)	L WELL DE	:РТН — S			NATEF	R) X WE	LL CAPACITY			_	
COURSELIT			= (11	feet		. 74	feet)) X	0.65 g	allons/foo	ot =	3-01	gallons
(only fill out if		RGE: 1 EQUI	PMENT VOL. =			UBING	gailons/foot			G LENGTH) + FI				
INITIAL PUM	P OR TUBING	The second	FINAL PUN	gallons + IP OR TUB	ING		PURGIN			feet) + PURGING	gallon	_ 1	gallons TOTAL VOLI	JME ,
DEPTH IN W	ELL (feet):	810	DEPTH IN V	T	T	no I	INITIATE	I	11:37	ENDED AT: DISSOLVED	11:0	G F	PURGED (ga	allons): 4.75
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPT TO WATE (feet)	R (star	H ndard its)	темр. (°С)	(circ μm	OND. le units) hos/cm	OXYGEN (circle units) mg/L or % saturation	TURB (NT	BIDITY "Us)	COLOF (describe	
11:50	3.25	3.25	-25	649		+	30.0	C.	49	1. 29	+	72	Clar	nom
11:53	.75	4.00	. 25	6.49	-	-	30.0	+	79	1.25	5.8		-	
11:50	- 25	4.25	-25	6.47	6.	Ч	70.0	0.	५ १	1.24	5.0	T	-	
				+							+			
				+				-					+	
				+									+	
					1						1		1	
													1	
												-		
	CITY (Callege	Des Castili A	75" = 0.02 ;	48 = 0.04	4.05% -	0.00	01 - 0 40	011-	0.07. 41	- 0.05. 54-		<u> </u>		
			75" = 0.02; t.): 1/8" = 0.00				2" = 0.16; 1 " = 0.0026;		0.37; 4" 6" = 0.004;	' = 0.65; 5" = 3/8" = 0.006		6" = 1.4 = 0.010	,	
PURGING EC	QUIPMENT CO	DDES: B=	Bailer; Bl	P = Bladder			= Electric Su		ble Pump;	PP = Perista	altic Pump	o; (0 = Other (S	pecify)
SAMPLED B	Y (PRINT) / AF	FILIATION:	1	SAMPLE	R(S) SIGN/									
Derek Da	vis/MDM	Services		K		\searrow				SAMPLING	T: []:r	2	SAMPLING ENDED AT	
PUMP OR TU DEPTH IN W	JBING	1		TUBING		IDDE				FILTERED: Y	N		FILTER SIZI	Ξ:μm
		N: PUMF	<u> </u>	MATERIA	L CODE: TUBIN		' <u>N</u> (repla	aced)	Filtratio	n Equipment Typ DUPLICATE:			<u>N</u>	·
SAMP		R SPECIFICA		SA			TION (includ		tice)	INTEND		T		SAMPLE PUMP
Sample ID Code	# CONTAIN ERS	MATERIAL CODE	VOLUME	PRESER			OTAL VOL D IN FIELD (mL)	FINAL pH	ANALYSIS A METHO	AND/OR	EQU		FLOW RATE (mL per minute)
MW-6	3	CG	40mL	HC						BTEX/M		-	APP	300
MW-6	1	AG	250mL	NaT						PAH		-	APP	ومر
MW-6 MW-6	1	AG CG	250mL 40mL	H2S						TRPI			APP APP	005
MW-6	1	AG	1000mL					\rightarrow		EPH		1	APP	200
	,		1000mL		-			-+			•	+		300
REMARKS:	1	I								<u>}</u>		1		
ORP =	080													
MATERIAL		AG = Amber G		Clear Glass	-	= High	Density Poly	yethyle	ne; LDF	E = Low Density	y Polyethy	ylene;	PP = Poly	/propylene;
		S = Silicone;	T = Teflon; PP = After (Thr	0 = Other		n, I	B = Bailer;	PO -	- Bladder P		Electric (Submer	eible Durner	
	-	RI	PP = Reverse	Flow Peris	staltic Pump); S	M = Straw Me	ethod (Tubing Grav	vity Drain); C	Electric a D ≈ Other		sible Pump; y)	
NOTES: 1			nstitute all of			equire	d by Chap	ter 62	-160, F.A.	C.				

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE						SITE				_		
NAME: CON						LOCATION: 52	25 E	- Main				
WELL NO: M	W-7R			SAMPLE I	: MW	-7R				DATE:	7/Mzi	
					PUF	RGING DA	ΓA					
WELL		TUBING		===				STATIC DE				
DIAMETER (ir			ER (inches): (J.25 DEPT	H: 2 fe	et to 12 feet			R (feet): 6-7-	, c	DR BAILER: PP	
(only fill out if a					- 314		WATE	N) A WE				
COURSENT				12 fe = PUMP VOLUME	et -	6-20	feet X	t) X		allons/foot		gallons
(only fill out if a		KGE: 1 EQUI			: + (IUB			-	G LENGTH) + FL			
				gallons + (IP OR TUBING		gallons/foot			feet) + PURGING	gailons	TOTAL VOI	
DEPTH IN WE		8.5		WELL (feet):	55	INITIATE	D AT:	12:04	ENDED AT:	12:24	PURGED (g	allons): / 50
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standar units)	d TEMP. ([°] C)	(ciro μm	COND. cle units) hos/cm mS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBII (NTU		
12.18	-90	.90	10	6.81	6.5	30.2	D	.46	0-81	18.4	17 Cha	in
12:21	- 30	1.20	.10	6.11	65	346		-46	0.79	17.9	6 -	
12:24	-30	1.50	•(0	4.11	65	30.2	0	· 4 Ko	0.78	17.2	8 -	_
			_									
			_	+						-		
										L		
				++								
		Des Fantilia del	7511 - 0.00	1 " = 0.04; 1.2		01 - 0.40		0.37; 4 "				
				1" = 0.04; 1.2 006; 3/16" = 0.			3 ^m = 5/1	= 0.37; 4" 6" = 0.004;	= 0.65; 5" = 3/8" = 0.006;			= 5.88 = 0.016
PURGING EQ	UIPMENT CO	DDES: B =	Bailer; Bl	P = Bladder Pump		SP = Electric Sub		ible Pump;	PP = Perista	Itic Pump;	O = Other (Specify)
SAMPLED BY		CULATION				PLING DA	TA		т			
SAMPLED DT				SAMPLER(S) S	GNATU	RE(S):		- >	SAMPLING		SAMPLIN	
Derek Dav	vis/MDM 3	Services			-				INITIATED AT	: 72/2	ENDED A	T: (2:30
PUMP OR TU DEPTH IN WE		8.5		TUBING MATERIAL COL		ÞF		FIELD-I Filtratio	FILTERED: Y n Equipment Typ	<u>N</u>	FILTER SIZ	£:μm
FIELD DECO		N: PUMP	Y <u>N</u>			Y <u>N</u> (repla	ced)		DUPLICATE:	<u>v</u> . Y	N	
SAMPL	E CONTAINE	R SPECIFICA	TION	SAMPLE	PRESER	RVATION (includin	ng we	t ice)	INTENDI		SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAIN ERS	MATERIAL CODE	VOLUME	PRESERVATIV USED		TOTAL VOL DED IN FIELD (r	nL)	FINAL pH	ANALYSIS A METHO	ND/OR	EQUIPMENT	FLOW RATE (mL per minute)
MW-7R	3	CG	40mL	HCL					BTEX/M	ГВЕ	APP	्रेष्ठ
MW-7R	1	AG	250mL	NaThio					PAH		APP	300
MW-7R	1	AG	250mL	H2SO4					TRPH		APP	240
MW-7R	3	CG	40mL	HCL					VPH		APP	700
MW-7R	1	AG	1000mL	lce					EPH		APP	300
REMARKS:												
ORP = ~ 4	74									_		
MATERIAL C		AG = Amber G				High Density Poly	ethyle	ine; LDP	PE ≈ Low Density	Polyethyle	ene; PP = Po	lypropylene;
SAMPLING E				O = Other (Spec		B = Bailer;	BP	= Bladder Pi	imp FSP =	Electric Su	ubmersible Pump	
		RF	PP = Reverse	Flow Peristaltic F	ump;	SM = Straw Me	thod (Tubing Grav	rity Drain); O	= Other (S		

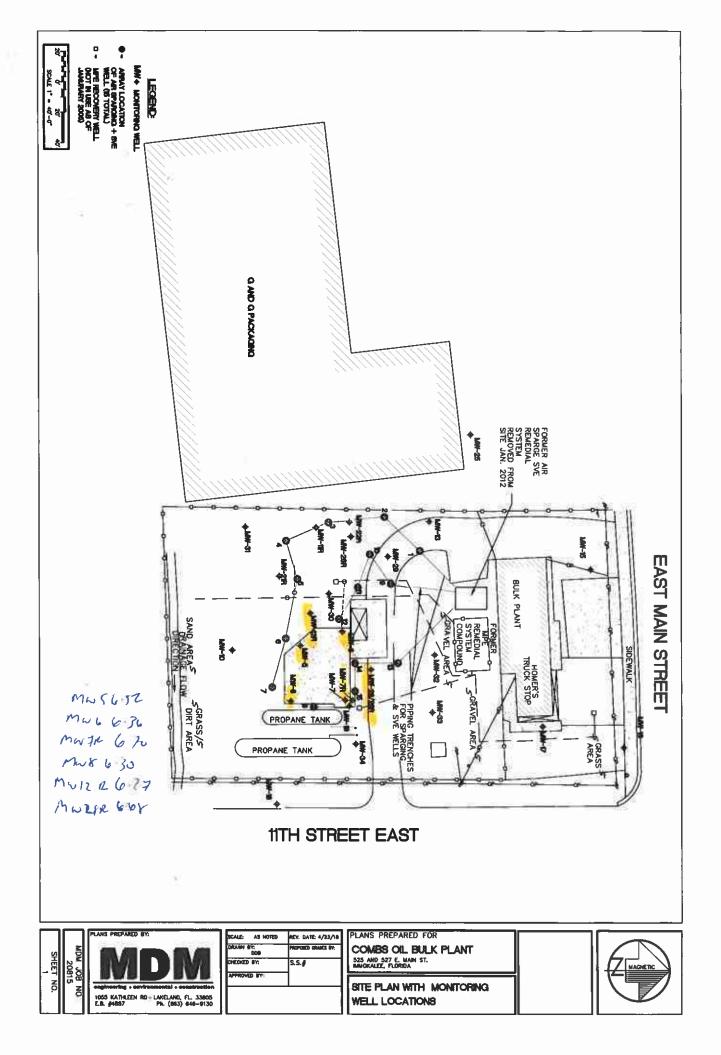
2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE						SITE							
NAME: COI	mbs Oil				L	OCATION: 52	2 <u>5</u> E	Main	<u>St, Immok</u>	alee,			
WELL NO: N	1W-8			SAMPLE ID:	MW-	-8				DATE:	7/8/21		
						GING DA	_						
WELL		TUBING	-					STATIC DE			URGE PUMP		
DIAMETER (i WELL VOLU	ME PURGE:	1 WELL VOL	TER (inches): I	L WELL DEPTH -	T.5 STAT	feet to 11 fee			r (ieei).		DR BAILER: F	<u>'P</u>	
(only fill out if	applicable)					6.30		,			3.05	-	
FOLIPMENT				11 fee = PUMP VOLUME +		-) X TURINI	0.65 ga G LENGTH) + FL	llions/foot	= <i>~</i>	<u></u>	allons
(only fill out if			=		(1000								
INITIAL PUM	P OR TUBING			gailons + (AP OR TUBING 🛛 🦨	-	gallons/foot PURGIN	2		feet) + PURGING	galions	= gall TOTAL V		
DEPTH IN W		8.0	DEPTH IN	WELL (feet):			D AT:	10:35	ENDED AT:	10:54			s): 4.75
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)		pH tandard units)	ТЕМР. (⁰ С)	(circ μm	OND. le units) hos/cm mS/cm	DISSOLVED OXYGEN (circle units) OCUL or % saturation	TURBI (NTU		LOR cribe)	ODOR (describe)
10:48	3.75	3.25	125	6.44 (6.3	29.6	s.	પર્ક	1.45	7.6,	4 CL	a	wind
18:51	.75	4.00	. 25	6.49	6.3	79.6	0	. 45	1.42	7.1		_	
10:54	.75	4.75	.25	6.44	6-3	29.4	U	.45	1.41	6.14	d -	~	-
			_	_		_							
			_										
			_			-				ļ			
			_			_							
			-										
			-	+									
				1" = 0.04; 1.25" 006; 3/16" = 0.00		; 2 " = 0.16; 1/4 " = 0.0026;		0.37; 4" 6" = 0.004;	[•] = 0.65; 5 [•] = 3/8 [•] = 0.006;			" = 5.88 " = 0.01	
PURGING EC	QUIPMENT CO	DDES: B	= Bailer; B	P = Bladder Pump;	the second se	P = Electric Sub		ble Pump;	PP = Perista	Itic Pump;	0 = Othe	r (Speci	fy)
SAMDIED O	Y (PRINT) / Af			SAMPLER(S) SIG		PLING DA	TA		T				
	• •			SAMIFLER(3) SIG	NATUR	E(3).		\geq	SAMPLING INITIATED AT	: 10'r		.ING DAT:	1:00
Derek Da PUMP OR TU	IVIS/MDM :	Services		TUBING					FILTERED: Y	FILTER			
DEPTH IN W		8.0		MATERIAL CODE	HDP	E		Filtratio	n Equipment Typ	<u>N</u> ie:	FILVER		μιο
FIELD DECO	NTAMINATIO	N: PUMF	° Ү <u>N</u>	TUE	ling	Y <u>N</u> (repla	ced)		DUPLICATE:	Υ.	<u>N</u>		,
SAMPI		R SPECIFICA	TION	SAMPLE PF	RESER	VATION (includi	ng wei	t ice)	INTEND		SAMPLING		MPLE PUMP
SAMPLE ID CODE	# CONTAIN ERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	ADD	TOTAL VOL DED IN FIELD (r	nL)	FINAL pH	ANALYSIS A METHO		EQUIPMEN1 CODE		LOW RATE L per minute)
MW-8	3	CG	40mL	HCL					BTEX/MT		APP	3	00 U
MW-8	1	AG	250mL	NaThio					PAH		APP	-	·
MW-8	1	AG	250mL	H2SO4			\rightarrow		TRPH		APP	_) w)
MW-8	3	CG	40mL	HCL	+				VPH		APP) • <u>(</u>
MW-8	1	AG	1000mL	Ice	-		-+		EPH		APP	7	<u>ن ۲</u>
REMARKS:													
	21												
		AG = Amber G	ass; CG =	Clear Glass: HD	PE = Hi	igh Density Poly	ethvle	ne: IDP	E = Low Density	Polvethulz	- PD - I	Polyprop	vlene:
				0 = Other (Specify		ight bonoity i bly			E - LOW Denaity	, oriterriale	vns, FF=1	ownor	yishe,
SAMPLING E				rough) Peristaltic Pu Flow Peristaltic Pu		B = Bailer, SM = Straw Me		Bladder Pu			Ibmersible Pur	np;	
NOTES: 1	. The above			f the information						= Other (S	specity)		

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE						ITE							
NAME: CO	nbs Oll				L(DCATION: 52	25 E	Main	<u>St, Immok</u>			_	
WELL NO N	1W-12R			SAMPLE ID	: MW-	12R				DATE:	7/8/21		
						GING DA					3333		
WELL		TUBING	-					STATIC DE	:PTH (feet): 6.27	2 PI	JRGE PUMP TY	PE	
DIAMETER (i	ncnes): ∠ ME PURGE:	1 WELL VOL	TER (inches): (UME = (TOTA	L WELL DEPTH	H: ∠ feet - STATIO	t to 12 feet C DEPTH TO V		X WE		0	R BAILER: PP		
(only fill out if						6.27					7 77		
FOLIPMENT			= (PMENT VOL :	12 fe = PUMP VOLUME			feet) X		0.16 ga G LENGTH) + FL	llons/foot	= 3.72	gallons	
(only fill out if			=	gallons + (. (100/14	gallons/foot			·				
INITIAL PUM	P OR TUBING			P OR TUBING	6	PURGIN	3		feet) +	gallons	TOTAL VOL	UME	
DEPTH IN W	ELL (feet):	8.0		WELL (feet):	8.0	INITIATE	D AT: /	12:30	ENDED AT:	12:59	PURGED (g	allons): 5-71	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	темр. (°С)	(circl) µmh	DND. e units) tos/cm tos/cm	DISSOLVED OXYGEN (circle units) Control or saturation	TURBID (NTUs			
12:53	3.75	3.75	,25	6.40	6.5	23.0	¢.	71	0.34	4.6	6 Clear	we	
12:06	- 75	4.10	- 25		65	28-1	Ø,		0.83	4.0			
12:59	.X	5.25	.25	4.40	6.5	28.1	c	41	0.81	3.15	-		
	,												
												_	
				-								_	
			_										
			_	+		-							
			_										
	CITY (Collong	Por Footly 0	75" - 0.02	1" = 0.04; 1.2	EH - D 00:	22 = 0.45	21 - 1	0.07. 48	= 0.65; 5 ^H = 1	1.02; 6 "	= 1.47; 12" =	5.00	
				006; 3/16" = 0.				0.37; 4" i"=0.004;	= 0.65; 5" = 3/8" = 0.006;			0.016	
PURGING EC	QUIPMENT CO	DDES: B	= Bailer; B	P = Bladder Pump		= Electric Sub		e Pump;	PP = Perista	itic Pump;	O = Other (Specify)	
SAMPLED B				SAMPLER(S) SI			TA		4				
	. (nertion.				_(0).		<	SAMPLING		SAMPLIN	G The	
-	vis/MDM :	Services							INITIATED AT: 12:19 ENDED AT: 13:05				
PUMP OR TU DEPTH IN W		8.0		TUBING MATERIAL COD	DE: HDPE	-			FILTERED: Y n Equipment Typ	e:	FILTER SIZ	E:μm	
FIELD DECO	NTAMINATIO	N: PUMI	Р Ү <u>N</u>	τι	JBING	Y <u>N</u> (repla	ced)	•	DUPLICATE:	Y	<u>N</u>		
SAMP			TION	SAMPLE	PRESERV	ATION (includi	ng wet	ice)	INTENDI	ED	SAMPLING	SAMPLE PUMP	
SAMPLE ID CODE	# CONTAIN ERS	MATERIAL CODE	VOLUME	PRESERVATIV USED		TOTAL VOL ED IN FIELD (r	nL)	FINAL pH	ANALYSIS A METHO	ND/OR	EQUIPMENT	FLOW RATE (mL per minute)	
MW-12R	3	CG	40mL	HCL					BTEX/M1	rBE	APP	200	
MW-12R	1	AG	250mL	NaThio					PAH		APP) as	
MW-12R	1	AG	250mL	H2SO4			Τ		TRPH		APP	رەر	
MW-12R	3	CG	40mL	HCL					VPH		APP	700	
MW-12R	1	AG	1000mL	lce					EPH		APP	Day	
REMARKS:													
$ORP = \gamma$													
MATERIAL C	MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)												
SAMPLING E				ough) Peristaltic f	oump;	B = Bailer,	BP =	Bladder Pu	imp; ESP = 1		omersible Pump;		
NOTES: 1	. The abov			Flow Peristaltic F		SM = Straw Me				= Other (S	pecity)	_	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)


SITE						SITE						
NAME: COL						LOCATION: 5	25 E	E Main	St, Immok	alee, F	L	
WELL NO: N	1W-28R			SAMPI	E ID: MV	V-28R				DATE: 🗦	1/1/21	
					PU	RGING DA	TA					
WELL		TUBING				EN INTERVAL		STATIC D		1.	RGE PUMP TY	
DIAMETER (i WELL VOLU		1 WELL VOL	TER (inches): UME = (TOTA	J.25 D	EPTH: Z	feet to 12 feet		TO WATE	R (feet): 66	OR	BAILER: PP	
(only fill out if			(,								1 m	
FOUIDMENT				12	feet -	G V F BING CAPACITY) X TURINI	0.16 ga G LENGTH) + FL	llons/foot =		gallons
(only fill out if	applicable)	NGE. TEQUI	=									
INITIAL PUM		6 -	-	gallons + (IP OR TUBIN		gallons/foot			feet) + PURGING	gallons =	gallon TOTAL VOL	
DEPTH IN W		8.5		WELL (feet):	1G 8-5			13:13	ENDED AT:	(3:22	PURGED (g	allons): 1.56
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gailons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	Hq (stands) (~C)	(circ μm	OND. cle units) hos/cm mS/cm	DISSOLVED OXYGEN (circle units) (mg/l) or % saturation	TURBIDI (NTUs)		
13:22	190	.90	-13	6.78	6.3		Ō.	24	0.53	5.29	Clea	- Non
13:25	-30	1-20	.10	6.78	6-3		-	x 24	0.52	4.60	~	-
13:21	- 30	1-50	·/o	6.28	6.3	29.2	C	5.24	0.56	3.78	-	
					- 							
				+			1					
			-	+								
				-	-							_
				+			<u> </u>					
			75'' = 0.02;			06; 2 " = 0.16;			= 0.65; 5 " =			• 5.88
	QUIPMENT CO		t.): 1/8" = 0.0) = Bailer: B	P = Bladder F	<u>= 0.0014;</u> 2ump: 1	1/4" = 0.0026; ESP = Electric Su		6" = 0.004; ble Pump:	3/8" = 0.006; PP = Peristal		010; 5/8" = 0 = Other (;	<u>= 0,016</u> Specify)
						MPLING DA						é. 7
SAMPLED B	Y (PRINT) / AF	FILIATION		SAMPLER(S) SIGNATI	JRE(S):		>	SAMPLING		SAMPLIN	G
Derek Da	vis/MDM :	Services		F		\searrow			INITIATED AT	13:5	ENDED A	T: 13:34
PUMP OR TU	JBING			TUBING					FILTERED: Y	N	-	 Έ:μm
DEPTH IN W	NTAMINATIO	N: PUMF	P Y <u>N</u>	MATERIAL	TUBING		(hood)	Filtratio	n Equipment Typ	e: Y		
				SAM		RVATION (includ	· ·	tice)	+		<u>N</u>	
SAMPLEID	#	MATERIAL		PRESERV	1-	TOTAL VOL		FINAL	INTENDI ANALYSIS A	ND/OR E	Sampling Equipment	SAMPLE PUMP FLOW RATE
CODE	CONTAIN ERS	CODE	VOLUME	USED		DDED IN FIELD (mL)	pH	METHO	D	CODE	(mL per minute)
MW-28R	3	CG	40mL	HCL					BTEX/MT	BE	APP	300
MW-28R	1	AG	250mL	NaThi					PAH		APP	200
MW-28R	1	AG	250mL	H2SO					TRPH		APP) 0-
MW-28R	3	CG	40mL	HCL					VPH		APP	Des
MW-28R	1	AG	1000mL	lce			\square		EPH		APP	ブロ
REMARKS:												
	e ** .											
		AG = Amber G	ass; CG =	Clear Glass	HUDE -	High Density Poly	athula		E = Low Density	Polyothula		upropulana
		S = Silicone;		0 = Other (S		right benalty POI	anyle	ne, LUF	L - LOW Density	roiyetiiyieti	-, FF-P 0	ypropylene;
			PP = After (Thi FPP = Reverse			B = Bailer, SM = Straw Me	BP =	= Bladder Pr	ump; ESP = I		nersible Pump	
NOTES: 1	The abov					uired by Chapt				= Other (Sp	ecity)	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

DEP-SOP-001/01 FT 1000 General Field Testing and Measurement

	For	n FD 9000	-8: FIELD	INSTRUMEN	T CALIE	RATION RE	CORDS	
INSTRUM	IENT (N	IAKE/MOE	DEL#) <u>YS</u>	SI 550/Sper Tl	J-2016/H	lanna INS	TRUMENT #	<u> </u>
PARAME	TER:							
TEN:	1PERATU	re 🛛	CONDUCTIV	TY 🗋 SA	LINITY	🛛 pH	ORP	
🛛 TUF	RBIDITY		RESIDUAL C	DC 🛛)	OTHE	R	
STANDA	RDS: [S	Specify the ty	pe(s) of stand	ards used for call ed or purchased]	ibration th	e origin of the s	tandards, the s	tandard
				ductivity-1 413		nH-7.00 exn	00-100%	-DI water
				nductivity-447 e				DI Mater
Standa								
DATE (mm/dd/yy)	TIME (hr:min)	STD A.B.C)	STD	INSTRUMENT	DEV	CALIBRATED	TYPE	SAMPLER
-7/1	10:05	AND C	VALUE	RESPONSE		(YES NO)	(INIT CONT)	INITIALS
7/8/21	1	A/B)	turbidity	1 412/444	0/0 0/0	Ý.	0	-
7/3/4	10:25	A)B)	Conduct 7.0/4.0				1	2
			рН	2.0/4.0	6/0	4		P
7/8/21	(0.30	A	100% DO	(00	4	Ĭ		0
							-	1
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
3/8/21	12:46	ANB.	tuchd ty	100/10-0	0/0	U		0
7/1/2	12:45	A2B	Conduct	1 413/447	0/0	Ý		0
7/+/21	13:50	AB	10(9)	70/40	0/0	Y	16-	0
Flater	13:55	A	011 1007			ų		X
1/2/11			DO	100	6	<u> </u>	· · · · · · · · · · · · · · · · · · ·	Se .
	-		2					_
					-			
			1				11 	
								1 A.
			-		-			
		-		-	-			
P		1						
					-	-		
B	1	1			1			

82 Location 525 E Moun St. Innotales Date 7/8/21 ZOVIS Project / Client Curtos 0.1 FAC 114839176 7:00 Deret Dans. Jell Lateland Morn office, in Morns N.SSM NV Zeo van En lovke to 5. k. Stevale. Lige - Saple (10) Miss weather warm sonny. 10:00 - Arrive on site Took wil knode Mars 6.52 Me 6 6 34 m 2 6 50 mas 6 30 m 128 6 22 MW282 GOR 10.15 - Checked CAL of meters see collay 10:35 - Began Ruging Mar & See sample lig 1057- Stapled mus 11:07 Begin Roging in 5 see sough by 11.25 - Samples Mus-(1.37 - Began fugay trule de sample by 11:56 - saided rense 12:07 - Regan Pozing MW2R see unto by 12:24 - sampled month-12:38 - Bran Luging Mulle see sample by 12:59 - Singled in 12k-13.13 - Beyon Roger me 288 see sample by 13:28 - sampli Muzor ---13: you checked cal of metus see cally 19.05- will samples procled on ite off site En Kern to Linkeland Mor affire. Prosmake < ·





1055 Kathleen Road, Lakeland, FL 33805. Tel (863)646-9130 Fax (863)648-1106 www.mdmservices.com

July 10, 2017

Mr. Josh Tarver, Project Manager Florida Department of Environmental Protection Petroleum Restoration Program 2600 Blair Stone Rd Tallahassee, Florida 32399-2400

Re: **Post Active Remediation Monitoring Report (Annual) – Task 5** Combs Oil Bulk Plant 525 East Main Street Immokalee (Collier County), Florida FDEP Facility #118839176 FDEP P.O. #ADDECB

Dear Mr. Tarver,

This correspondence and accompanying appendices serves as the Annual Post Active Remediation Monitoring (PARM) Report for the above referenced site, performed in accordance with FDEP Purchase Order No. ADDECB, Task 5. The appendices are compiled as follows:

# Appendix A

Figure 1:	Constituent Concentrations in the Groundwater
Figure 2:	Water Table Elevation (June 2017)

# **Appendix B**

Table 1a	Groundwater Monitoring Well Analytical Summary – VOCs & Metals
Table 1b	Groundwater Monitoring Well Analytical Summary – PAHs &
10010 10	TRPHs
Table 1c	Groundwater Monitoring Well Analytical Summary – Natural
	Attenuation (NA) Parameters
Table 2	Groundwater Elevation Summary
Time vs. Con	centration Plots (MWs 5, 6, 7, 8 & 28)

# Appendix C

Laboratory Analytical Results, Chain of Custody, Groundwater Sampling Logs, Equipment Calibration Record, Field Notes (June 2017 sampling event)

Site conditions as determined from the semi-annual groundwater sampling events of designated monitoring wells as conducted from December 2015 through June 2017 are discussed in the following Sections.

# Groundwater Sampling

In accordance with Tasks 2 through 5, respectively, of FDEP Purchase Order No. ADDECB, on December 23, 2015, June 16, 2016, December 21, 2016, and June 19, 2017, groundwater samples were obtained from the following monitoring wells for the laboratory analyses indicated:

MW5 (BTEX/MTBE) MW6 (TRPH) MW7 (TRPH) MW8 (BTEX/ MTBE) MW28 (TRPH)

The laboratory analytical results and other pertinent data for the 2015/2016 sampling events were provided in previous technical Reports. The laboratory analytical results, groundwater sampling logs, equipment calibration records, and field notes for the June 19, 2017 sampling event are compiled in Appendix C. The analytical results are summarized in Tables 1a and 1b (Appendix B), which include historical data. Figure 1 (Appendix A) depicts the laboratory analytical results for these latest 4 consecutive semi-annual groundwater sampling events at the respective well locations. Groundwater samples from the following wells contained constituents exceeding the respective cleanup target levels (CTLs):

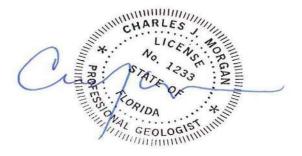
San	nple	TRPHs	Benzene
Location	Date	(µg/L)	(µg/L)
MW-5	12/23/15		7.0
	6/19/17		5.7
MW-7	12/23/15	16,000	
	6/16/16	16,000	
	12/21/16	7,900	
	6/19/17	24,000	
MW-8	12/23/15		4.6
MW-28	12/23/15	12,000	
	6/16/16	9,000	
	12/21/16	14,000	
GC	TLs	5,000	1
NAI	DCs	50,000	100

The above listed constituent concentrations are below the respective Natural Attenuation Default Concentrations (NADC) for benzene (NADC is 100 ug/L) and TRPH (NADC is 50,000 ug/L).

Time vs. Concentration plots from the laboratory analytical data from monitoring wells (MWs) 5 (benzene), 6 (TRPH), 7 (TRPH), 8 (benzene), and 28 (TRPH) from November 2011 to the present are also compiled in Appendix B. With the exception of the anomalously high concentration of benzene as detected in the MW5 groundwater samples obtained in May 2015, an overall declining trend in benzene is indicated from the MW5 and MW8 groundwater samples. Although benzene was detected at a concentration of 5.7 ug/L (exceeding the CTL of 1 ug/L) in the latest groundwater samples obtained on June 19, 2017, there is an overall downward trend of benzene in the MW5 groundwater samples. Regarding TRPH concentrations from the sampling of MWs 6, 7, and 28, a specific declining trend in concentrations over time is not indicated in the MW7 and MW28 groundwater samples. TRPH concentrations in the MW6 groundwater samples for the last 4 consecutive semi-annual sampling events are below the CTL of 5,000 ug/L.

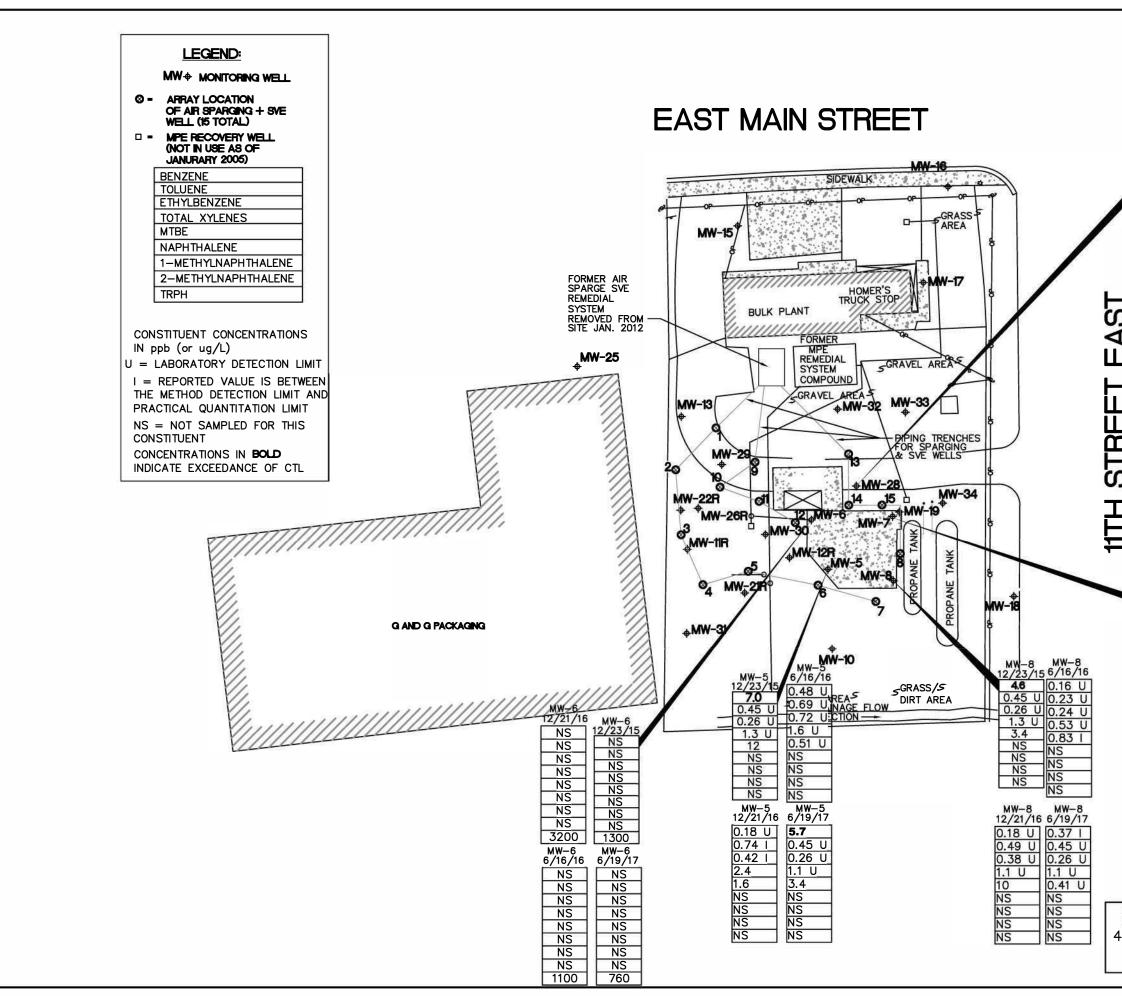
# Water Table Elevation

Water table measurements and associated elevations as obtained during the sampling of the various monitoring wells discussed above are compiled in Table 2 (Appendix B), which includes historical data. Figures 2 (Appendix A) depicts the water table elevations as determined from water table measurements obtained on June 19, 2017 in association with groundwater sampling. As indicated from this elevation data, surficial aquifer groundwater flow is predominantly to the east, which is generally in accordance with previous determinations of groundwater flow. It is noted the water table elevation of MW28 (96.27 ft.) is anomalously low for unknown reasons and is not honored in the contouring of Figure 2.

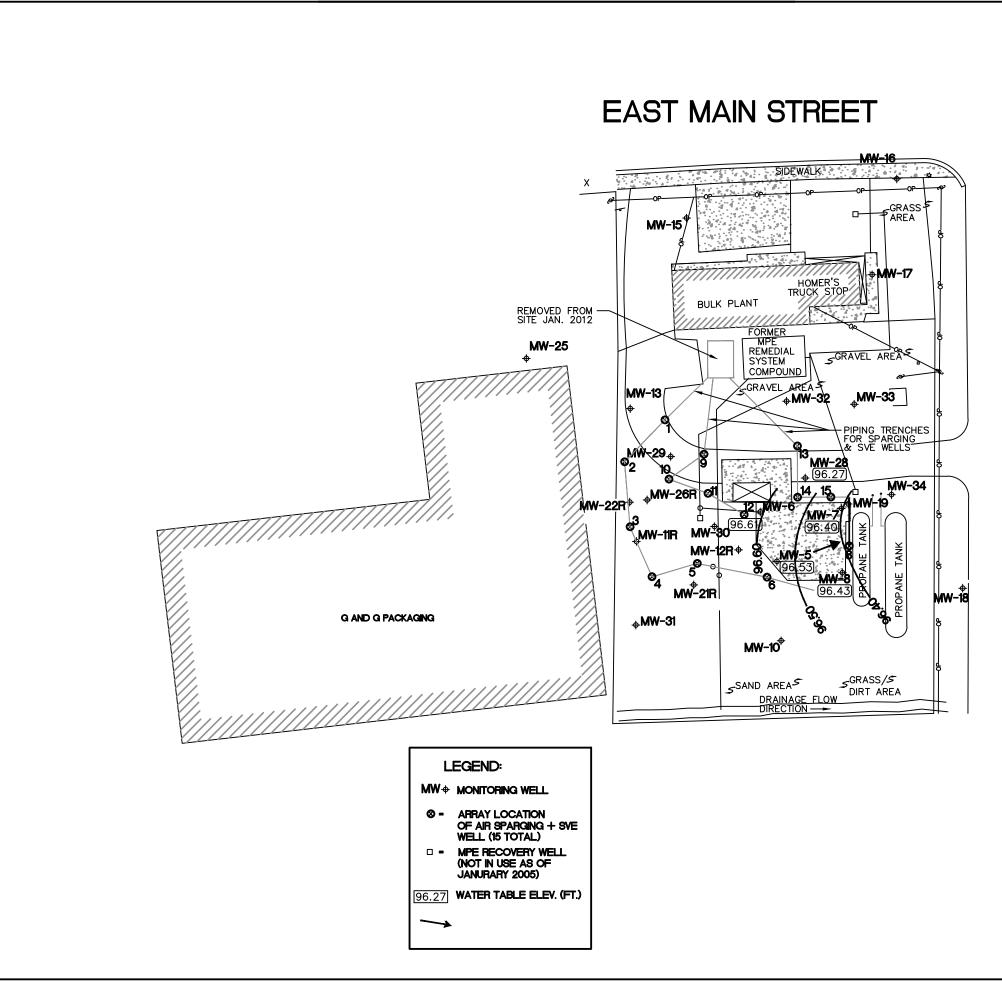

# Summary & Conclusion

Based on these most recent semi-annual groundwater sampling events of designated monitoring wells as conducted since December 2015, benzene and/or TRPH were detected in groundwater samples obtained from monitoring wells (MWs) 5, 7, and 28 at concentrations above respective CTLs, but significantly below NADCs. Natural Attenuation parameter sampling, although limited, as conducted in November 2014 (see Table 1c, Appendix B) generally indicates groundwater conditions favorable to anaerobic degradation of petroleum constituents. While natural attenuation of benzene is generally apparent, the natural attenuation of TRPH is not occurring, based on review of the groundwater analytical data obtained from monitoring wells MW7 and MW28 since 2010. To evaluate the possibility that petroleum constituents are adhering to the PVC materials of the monitoring wells,

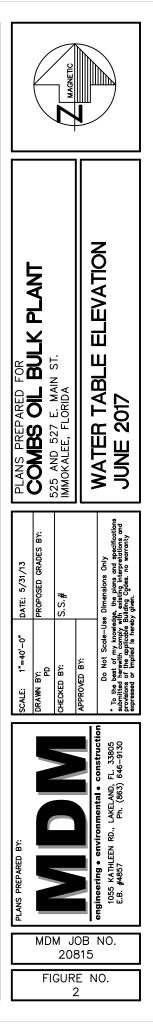
consideration should be given to replacing monitoring wells MW7 and MW28 (at a minimum) before continuing PARM/NAM. If TRPH concentrations persist in the groundwater samples from these wells following well replacement, limited supplemental remedial action, such as oxidizer and/or bio-remedial injections in the immediate vicinity of the active USTs, should be considered in order to achieve substantial reduction in the concentration of TRPH.

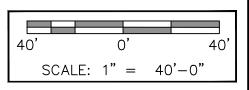

Should you require additional information during review of this Report, please contact me at 863-646-9130 ext. 104, or via email to jeff.morgan@mdmservices.com.

Professional Certification:




Charles J. Morgan, P. G. #1233


<u>7/10/17</u> Date **APPENDIX** A




	MW-28 12/23/15 NS NS NS NS NS NS NS NS NS NS NS NS NS	A MAGNETIC
11TH STREET EAST	NS       NS         NS       NS         NS       NS         NS       NS         12000       14000         MW-28       MW-28         6/16/16       6/19/17         NS       NS         NS	PLANS PREPARED FOR COMBS OIL BULK PLANT 525 AND 527 E. MAIN ST. IMMOKALEE, FLORIDA IMMOKALEE, FLORIDA CONSTITUENT CONCENTRATIONS IN GROUNDWATER
	MW-7       MW-7       MW-7       MW-7         2/23/15       6/16/16       12/21/16       6/19/17         NS       NS       NS       NS         NS       NS       NS       NS	SCALE: 1"=40'-0" DATE: 5/31/13 DRAWN BY: DRAWN BY: DRAWN BY: DRAWN BY: CHECKED BY: APPROVED BY: APPROVED BY: S.S.# APPROVED BY: Do Not Scale-Use Dimensions Only Do Not Scale-Use Dimensions on approving the applicible building of the applicible suiding of the applicible building of a expensions of the applicible building of a the applicible building of the applicible building of a the applic
		PLANS PREPARED BY: PLANS
40'	0'   40' SCALE: $1'' = 40'-0''$	MDM JOB NO. 20815 FIGURE NO. 1



**11TH STREET EAST** 





**APPENDIX B** 

Facility ID#: 118839176

# Facility Name: Combs Oil Bulk Plant

San	nple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total VOAs	МТВЕ	EDB	1,2-Di- chloro- ethane	Total Arsenic	Total Cad- mium	Total Chro- mium	Total Lead
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1	2/9/99	1 U	1 U	1 U	3.0 U	1 U	3.0 U	NS	NS	NS	NS	NS	NS
MW-2	2/9/99	15.00	1 U	80.00	3 U	95.00	3.0 U	NS	NS	NS	NS	NS	NS
MW-4	2/9/99	212.00	10.0 U	64.00	30.0 U	276.00	30.0 U	NS	NS	NS	NS	NS	NS
MW-5	2/9/99	133.00	5.0 U	5.0 U	15.0 U	133.00	15.O U	NS	NS	NS	NS	NS	NS
	6/16/03	390.00	55.00	50 U	57	502.00	120	NS	NS	NS	NS	NS	NS
	11/8/11	77.90	0.70	1.24	5.09	84.93	8.78	NS	NS	NS	NS	NS	NS
	1/3/12	0.56	0.48 U	0.45 U	0.94 I	1.50	1.8	NS	NS	NS	NS	NS	NS
	4/3/12	47.90	2.43	0.48 I	1.89	52.22	4.69	NS	NS	NS	NS	NS	NS
	8/20/12	19.50	0.140 U	0.190 U	6.16	25.66	26.5	NS	NS	NS	NS	NS	NS
	11/26/12	0.42 I	0.48 U	0.45 U	0.87 U	0.42	0.75 I	NS	NS	NS	NS	NS	NS
	2/25/13	16.50	0.48 U	0.75	0.87 U	17.25	2.04	NS	NS	NS	NS	NS	NS
	5/23/13	5.00	0.52	0.45 U	0.87 U	5.52	5.18	NS	NS	NS	NS	NS	NS
	11/20/13	2.63	0.48 U	0.45 U	0.87 U	2.63	0.67 U	NS	NS	NS	NS	NS	NS
	6/10/14	11.70	0.48 U	0.45 U	2.07	13.77	3.56	NS	NS	NS	NS	NS	NS
	11/19/14	1.20	0.140 U	0.190 U	0.200 U	1.20	1.25 I	NS	NS	NS	NS	NS	NS
	5/19/15	51.7	4.24	0.45	1.65	58.04	1.62	NS	NS	NS	NS	NS	NS
	12/23/15	7.0	0.45 U	0.26 U	1.3 U	7.0	12	NS	NS	NS	NS	NS	NS
	6/16/16	0.48 U	0.69 U	0.72 U	1.6 U	0 U	0.51 U	NS	NS	NS	NS	NS	NS
	12/21/16	0.18 U	0.74 1	0.42 1	2.4	3.56	1.6	NS	NS	NS	NS	NS	NS
	6/19/17	5.7	0.45 U	0.26 U	1.1 U	5.70	3.4	NS	NS	NS	NS	NS	NS
	0/13/17											110	
MW-6	2/9/99	FP	FP	FP	FP	FP	FP	NS	NS	NS	NS	NS	NS
	6/16/03	34	48.00	92	280	454	320	NS	NS	NS	NS	NS	NS
	11/7/03	87	46.00	52	93	278	12	NS	NS	NS	NS	NS	NS
	2/18/04	20	31.00	36	230	317	5.3	NS	NS	NS	NS	NS	NS
	5/18/04	500	250.00	230	1100	2,080	110	NS	NS	NS	NS	NS	NS
	8/26/04	1.70	1.00	1 U	2.3	5.00	5.4	NS	NS	NS	NS	NS	NS
	9/28/05	IU	1 U	1 U	2 U	1 U	4	NS	NS	NS	NS	NS	NS
	10/21/05	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/28/05	1 U	1 U	1 U	2 U	1 U	12	NS	NS	NS	NS	NS	NS
	3/29/06	1 U	1 U	1 U	2 U	1 U	10	NS	NS	NS	NS	NS	NS
	9/29/06	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	1/4/07	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	1/11/08	1 U	1 U	1 U	1 U	1 U	3.06	NS	NS	NS	NS	NS	NS
	4/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	7/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	10/21/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	2/3/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	5/4/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	8/5/09	0.29	0.1601 U	0.1959 U	0.2310 U	0.1601 U	0.2562 U	NS	NS	NS	NS	NS	NS
	10/28/09	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	0.67 U	NS	NS	NS	NS	NS	NS
	2/23/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
by others	9/10/10	3.04	0.730 I	0.520 U	0.980 U	3.77	9.93	NS	NS	NS	NS	NS	NS
	11/5/10	2.97	0.48 U	0.45 U	0.82 U	2.97	8.02	NS	NS	NS	NS	NS	NS
	11/8/11	0.36 U	0.48 U	0.45 U	0.87 U	0.36 U	0.67 U	NS	NS	NS	NS	NS	NS
	1/3/12	0.36 U	0.48 U	0.45 U	0.87 U	0.36 U	0.67 U	NS	NS	NS	NS	NS	NS
	4/3/12	0.49 I	1.41	0.45 U	1.30 I	3.20	0.67 U	NS	NS	NS	NS	NS	NS
	2/25/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/23/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/20/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/10/14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

Facility ID#: 118839176

# Facility Name: Combs Oil Bulk Plant

	nple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total VOAs	MTBE	EDB	1,2-Di- chloro- ethane	Total Arsenic	Total Cad- mium	Total Chro- mium	Total Lead
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-7	2/9/99	FP	FP	FP	FP	FP	FP	NS	NS	NS	NS	NS	NS
	6/16/03	360	50 U	50 U	50 U	360.0	1200	NS	NS	NS	NS	NS	NS
	11/7/03	210	1.4	1.7	1 U	213.1	11	NS	NS	NS	NS	NS	NS
	2/18/04	140	1 U	2.5	3.3	145.8	30	NS	NS	NS	NS	NS	NS
	5/18/04	160	1.4	2	3	166.4	42	NS	NS	NS	NS	NS	NS
	8/26/04	14	1 U	1.7	1.3	17.0	5 U	NS	NS	NS	NS	NS	NS
	9/27/05	17	1 U	1 U	2 U	17.00	2	NS	NS	NS	NS	NS	NS
	12/28/05	1 U	1 U	1 U	2 U	1U	5 U	NS	NS	NS	NS	NS	NS
	3/29/06	11	1 U	1.2	2 U	12.2	4.8	NS	NS	NS	NS	NS	NS
	9/29/06	1.1	1 U	1 U	1 U	1.10	1 U	NS	NS	NS	NS	NS	NS
	1/4/07	1.6	1 U	1 U	1 U	1.6	1 U	NS	NS	NS	NS	NS	NS
	8/10/07	1.15	1 U	1 U	1 U	1.15	1 U	NS	NS	NS	NS	NS	NS
	1/11/08	1.2	1 U	1 U	1.62	2.82	1 U	NS	NS	NS	NS	NS	NS
	4/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	7/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	10/21/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	2/3/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	5/4/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	8/5/09	0.77	0.35	0.1959 U	0.2310 U	1.1200	0.2562 U	NS	NS	NS	NS	NS	NS
	10/28/09	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	0.67 U	NS	NS	NS	NS	NS	NS
	2/23/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/4/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
by others	9/10/10	0.400 I	0.470 U	0.520 U	0.980 U	0.400 I	0.720 I	NS	NS	NS	NS	NS	NS
	11/8/11	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/3/12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/3/12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/20/12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/26/12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/25/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/23/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/20/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/10/14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

Facility ID#: 118839176

# Facility Name: Combs Oil Bulk Plant

Sar	nple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total VOAs	МТВЕ	EDB	1,2-Di- chloro- ethane	Total Arsenic	Total Cad- mium	Total Chro- mium	Total Lead
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-8	2/9/99	147.0	5.0 U	5.0 U	15.0 U	147.0	15.0 U	NS	NS	NS	NS	NS	NS
	3/14/02	1 U	1 U	1 U	1 U	1 U	6.9	NS	NS	NS	NS	NS	NS
	6/10/02	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	9/9/02	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	12/11/02	1 U	1 U	1 U	1 U	1 U	3	NS	NS	NS	NS	NS	NS
	6/16/03	1 U	1.1	1 U	1 U	1.1	1 U	NS	NS	NS	NS	NS	NS
	11/7/03	360	100 U	100 U	100 U	360	1600	NS	NS	NS	NS	NS	NS
	5/18/04	400	6.6	1.4	1.2	409.2	37	NS	NS	NS	NS	NS	NS
	8/26/04	2.8	1 U	1 U	1 U	2.8	5.1	NS	NS	NS	NS	NS	NS
	9/28/05	28	2.4	1 U	2 U	30.4	15	NS	NS	NS	NS	NS	NS
	12/28/05	31	1 U	1 U	2 U	31	12	NS	NS	NS	NS	NS	NS
	3/29/06	24	1 U	1 U	2 U	24	4.6	NS	NS	NS	NS	NS	NS
	9/29/06	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	1/5/07	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	8/10/07	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	1/11/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	4/18/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	7/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	10/21/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	2/3/09	1 U	1 U	1 U	1 U	1 U	6.82	NS	NS	NS	NS	NS	NS
	5/4/09	1 U	1 U	1 U	1 U	1 U	14.5	NS	NS	NS	NS	NS	NS
	8/5/09	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	0.2562 U	NS	NS	NS	NS	NS	NS
	10/28/09	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	46.7	NS	NS	NS	NS	NS	NS
	1/21/2010	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	41.5	NS	NS	NS	NS	NS	NS
	2/23/10	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	1.82	NS	NS	NS	NS	NS	NS
	6/23/10	NS	NS	NS	NS	NS	0.85 I	NS	NS	NS	NS	NS	NS
by others	9/10/10	13.4	0.470 U	0.520 U	0.980 U	13	4.11	NS	NS	NS	NS	NS	NS
-	11/5/10	12.4	0.48 U	0.45 U	0.87 U	12	7.9	NS	NS	NS	NS	NS	NS
	11/8/11	0.36 U	0.48 U	0.45 U	0.87 U	0.36 U	0.67 U	NS	NS	NS	NS	NS	NS
	1/3/12	0.36 U	0.48 U	0.45 U	0.87 U	0.36 U	0.67 U	NS	NS	NS	NS	NS	NS
	4/3/12	13.6	1.43	0.45 U	0.87 U	15.03	1.7	NS	NS	NS	NS	NS	NS
	8/20/12	0.160 U	0.140 U	0.190 U	1.07	1.07	0.180 U	NS	NS	NS	NS	NS	NS
	11/26/12	7.22	1.62	0.45 I	1.121	8.84	0.67 U	NS	NS	NS	NS	NS	NS
	2/25/13	1.67	0.48 U	0.45 U	0.87 U	1.67	0.67 U	NS	NS	NS	NS	NS	NS
	5/23/13	0.76	0.48 U	0.45 U	0.87 U	0.76	0.67 U	NS	NS	NS	NS	NS	NS
	11/20/13	4.89	0.48 U	0.45 U	0.87 U	4.89	0.85	NS	NS	NS	NS	NS	NS
	6/10/14	3.4	0.48 U	0.45 U	1.01 I	3.4	2.48	NS	NS	NS	NS	NS	NS
	11/19/14	0.160 U	0.140 U	0.190 U	0.200 U	0.140 U	0.180 U	NS	NS	NS	NS	NS	NS
	5/19/15	0.44 U	0.48 U	0.45 U	1.65 U	3.25 U	0.67 U	NS	NS	NS	NS	NS	NS
	12/23/15	4.6	0.45 U	0.26 U	1.3 U	4.6	3.4	NS	NS	NS	NS	NS	NS
	6/16/16	0.16 U	0.23 U	0.24 U	0.53 U	0 U	0.831	NS	NS	NS	NS	NS	NS
	12/21/16	0.18 U	0.49 U	0.38 U	1.1 U	0 U	10	NS	NS	NS	NS	NS	NS
	6/19/17	0.37 1	0.45 U	0.26 U	1.1 U	0.37	0.41 U	NS	NS	NS	NS	NS	NS
	0,10,11				-			-	-	-	-	-	
MW-10	2/9/99	1 U	1 U	1 U	3.0 U	1 U	3.0 U	NS	NS	NS	NS	NS	NS
	6/16/03	10	10	10	1 U	10	1 U	NS	NS	NS	NS	NS	NS
MW-11	5/11/99	10	10	10	10	10	10	NS	NS	NS	NS	NS	NS

Facility ID#: 118839176

## Facility Name: Combs Oil Bulk Plant

Sam	ple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total VOAs	МТВЕ	EDB	1,2-Di- chloro- ethane	Total Arsenic	Total Cad- mium	Total Chro- mium	Total Lead
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-11R	6/16/03	140	17	2.4	58	217.4	18	NS	NS	NS	NS	NS	NS
	11/6/03	14	3.9	1 U	7.9	25.8	5 U	NS	NS	NS	NS	NS	NS
	2/18/04						no sar	mple		1			
	5/18/04	1 U	1 U	1 U	1 U	1 U	110	NS	NS	NS	NS	NS	NS
	8/26/04	64	14	30	45	153	7.1	NS	NS	NS	NS	NS	NS
	3/28/06	15	5.5	51	171.1	242.6	1 U	NS	NS	NS	NS	NS	NS
	9/29/06	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	1/5/07	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	1/11/08	1.75	2.09	10.9	44.7	59.44	1 U	NS	NS	NS	NS	NS	NS
	4/18/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	7/17/08	1 U	1 U	1 U	1.54	1.54	1 U	NS	NS	NS	NS	NS	NS
	10/21/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	2/3/09	1 U	1 U	2.22	16.2	18.42	1 U	NS	NS	NS	NS	NS	NS
	5/4/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	8/5/09	0.2105 U	0.1601 U	0.24	1.01	1.25	0.2562 U	NS	NS	NS	NS	NS	NS
	10/28/09	0.36 U	0.48 U	0.45 U	0.88 I	0.88 I	0.67 U	NS	NS	NS	NS	NS	NS
by others	9/10/10	0.890 I	0.470 U	0.610 I	14.9	14.900	0.440 U	NS	NS	NS	NS	NS	NS
MW-12	2/9/99	FP	FP	FP	FP	FP	FP	NS	NS	NS	NS	NS	NS
MW-12R	3/14/02	110	20 U	63	130	303	1 U	NS	NS	NS	NS	NS	NS
	6/10/02	310	5.3	230	170	715.3	11	NS	NS	NS	NS	NS	NS
	9/9/02	100	2.5	12	14	128.5	7.8	NS	NS	NS	NS	NS	NS
	12/11/02	110	4.2	3.6	18	135.8	6.4	NS	NS	NS	NS	NS	NS
	11/6/03	2	1 U	1 U	1.5	3.5	12	NS	NS	NS	NS	NS	NS
	2/18/04	1 U	10	1 U	1 U	1 U	<5	NS	NS	NS	NS	NS	NS
	5/18/04	1.2	10	1 U	1 U	1.2	30	NS	NS	NS	NS	NS	NS
	8/26/04	4.2	1	2.8	3.7	11.7	7.7	NS	NS	NS	NS	NS	NS
	9/28/05	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS	NS	NS	NS
	12/28/05	1 U	1 U	1 U	2 U	1 U	47	NS	NS	NS	NS	NS	NS
	3/29/06	1 U	1 U	1 U	2 U	1 U	12	NS	NS	NS	NS	NS	NS
	9/29/06	1 U	10	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	1/4/07	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	1/11/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	4/18/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
MW-13	2/9/99	1 U	10	1 U	3.0 U	1 U	3.0 U	NS	NS	NS	NS	NS	NS
-	6/16/03	10	10	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	1/31/06	10	10	1 U	2 U	1 U	5 U	NS	NS	NS	NS	NS	NS
MW-14	2/9/99	2	10	1 U	3.0 U	2.00	3.00	NS	NS	NS	NS	NS	NS
MW-15	2/9/99	- 1 U	10	10	3.0 U	10	3.0 U	NS	NS	NS	NS	NS	NS
MW-16	2/9/99	10	10	10	3.0 U	10	3.0 U	NS	NS	NS	NS	NS	NS
	2/9/99	10	10	10	3.0 U	10	3.0 U	NS	NS	NS	NS	NS	NS
MW-17		10	10	10	3.0 U	10	3.0 U	NS	NS	NS	NS	NS	NS
MW-18	2/9/99		NS	1 U NS	3.0 U NS		3.0 U NS	NS	-				-
MM/ 10	4/3/12	NS	-	-	-	NS	-	-	NS	NS	NS	NS	NS
MW-19	2/9/99	10	10	1 U	3.0 U	10	3.0 U	NS	NS	NS	NS	NS	NS
	4/3/12	N	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-20	2/9/99	1 U	1 U	1 U	3.0 U	1 U	5.00	NS	NS	NS	NS	NS	NS

Facility ID#: 118839176

# Facility Name: Combs Oil Bulk Plant

Sar	nple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total VOAs	МТВЕ	EDB	1,2-Di- chloro- ethane	Total Arsenic	Total Cad- mium	Total Chro- mium	Total Lead
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-21R	6/16/03	470	50 U	50 U	94	564	320	NS	NS	NS	NS	NS	NS
	11/6/03	1.8	1 U	1 U	1 U	1.8	5 U	NS	NS	NS	NS	NS	NS
	2/18/04	1 U	1 U	1 U	1 U	1 U	5 U	NS	NS	NS	NS	NS	NS
	5/18/04	1 U	1 U	1 U	1 U	1 U	5 U	NS	NS	NS	NS	NS	NS
	8/26/04	2.5	1 U	1 U	1 U	2.5	7.6	NS	NS	NS	NS	NS	NS
	9/28/05	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS	NS	NS	NS
	12/28/05	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS	NS	NS	NS
	3/28/06	1 U	1 U	1 U	2 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	9/29/06	1 U	10	10	10	1 U	10	NS	NS	NS	NS	NS	NS
	1/4/07	1 U	10	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	4/18/08	10	10	10	10	1 U	10	NS	NS	NS	NS	NS	NS
	7/17/08	10	10	10	10	1 U	10	NS	NS	NS	NS	NS	NS
	10/21/08	10	10	10	10	1 U	10	NS	NS	NS	NS	NS	NS
	2/3/09	10	10	10	10	10	10	NS	NS	NS	NS	NS	NS
	5/4/09	10	10	10	10	1 U	10	NS	NS	NS	NS	NS	NS
	8/5/09	0.2105 U	0.1601 U	0.1959 U	0.2105 U	0.1601 U	0.2562 U	NS	NS	NS	NS	NS	NS
	10/28/09	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	0.67 U	NS	NS	NS	NS	NS	NS
by others	9/10/10	0.350 U	0.470 U	0.520 U	0.980 U	0.350 U	0.440 U	NS	NS	NS	NS	NS	NS
MW-22	5/11/99	6.550 C	0.470 0	0.520 0	6.500 C	FP	0.440 0 FP	NS	NS	NS	NS	NS	NS
MW-22R	3/11/99	310	270	460	2000	3.040.00	20 U	NS	NS	NS	NS	NS	NS
WW-ZZR	6/10/02	540	520	460 660	1700	3,040.00	20 U 82	NS	NS	NS	NS	NS	NS
						705.00		NS	NS	NS	NS	NS	NS
	9/9/02	94	31	250	330	1,550.00	5 U	NS	NS	NS	NS	NS	NS
	12/11/02	160	140	410	840	1,940.00	100 U	NS	NS	NS	NS	NS	NS
	11/7/03	26	84	330	1500	30.00	79	NS	NS		NS	-	
	2/18/04	14	3.8	4.8	7.4	77	30	NS	NS	NS NS	NS	NS NS	NS NS
	5/18/04	24	10	48	5	13	5 U	NS			NS	-	-
	8/26/04	1 U	1.2	3	8.4	13	5 U	NS	NS	NS	NS	NS	NS
	9/27/05	1 U	1 U	1 U	2 U	147	5 U		NS	NS	-	NS	NS
	12/28/05	6.5	1 U	1 U	140		5 U	NS	NS	NS	NS	NS	NS
	3/28/06	1 U	1.7	17	30.3	49.0	1 U	NS	NS	NS	NS	NS	NS
	9/29/06	1 U	1 U	1 U	0.43	0.43	1 U	NS	NS	NS	NS	NS	NS
	1/4/07	2.9	10	18	63.5	94.4	1 U	NS	NS	NS	NS	NS	NS
	8/10/07	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	1/11/08	10	10	10	10	10	10	NS	NS	NS	NS	NS	NS
	4/17/08	1 U	1 U	1 U	1 U	10	1 U	NS	NS	NS	NS	NS	NS
	7/17/08	1 U	1 U	1 U	1 U	10	1 U	NS	NS	NS	NS	NS	NS
	10/21/08	1 U	1 U	1 U	1 U	10	1 U	NS	NS	NS	NS	NS	NS
	2/3/09	1 U	1U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	5/4/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	8/5/09	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	0.2562 U	NS	NS	NS	NS	NS	NS
	10/28/09	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	0.67 U	NS	NS	NS	NS	NS	NS
by others	9/10/10	0.350 U	0.470 U	0.520 U	0.980 U	0.350 U	0.440 U	NS	NS	NS	NS	NS	NS
MW-23	2/9/99	8.0	3.0	3.0	7.0	21.0	3.0 U	NS	NS	NS	NS	NS	NS
MW-25	2/9/99	1 U	1 U	1 U	3.0 U	1 U	3.0 U	NS	NS	NS	NS	NS	NS
MW-26	5/11/99	11.0	1 U	1 U	1 U	11.0	2.50	NS	NS	NS	NS	NS	NS
MW-26R	8/20/12	0.160 U	0.140 U	0.190 U	0.510 U	1 U	0.180 U	NS	NS	NS	NS	NS	NS
	11/26/12	0.83	0.48 U	1.15	5.29	7.27	0.67 U	NS	NS	NS	NS	NS	NS
MW-27	5/11/99	9.60	1 U	4.40	1.90	15.90	7.80	NS	NS	NS	NS	NS	NS

Facility ID#: 118839176

# Facility Name: Combs Oil Bulk Plant

San	nple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total VOAs	МТВЕ	EDB	1,2-Di- chloro- ethane	Total Arsenic	Total Cad- mium	Total Chro- mium	Total Lead
ocation	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-28	11/7/03	270	16	280	350	916	16	NS	NS	NS	NS	NS	NS
	2/18/04	340	13	250	280	883	50 U	NS	NS	NS	NS	NS	NS
	5/18/04	140	2.1	160	81	383.1	12	NS	NS	NS	NS	NS	NS
	8/26/04	1200	230	390	710	2,530	410	NS	NS	NS	NS	NS	NS
	9/27/05	24	1.3	15	28	68.3	6.5	NS	NS	NS	NS	NS	NS
	12/28/05	36	1 U	1 U	2 U	36	24	NS	NS	NS	NS	NS	NS
	3/29/06	86	3.5	30	49.9	169.4	12	NS	NS	NS	NS	NS	NS
	9/29/06	960	70	480	880	2,390	110	NS	NS	NS	NS	NS	NS
	1/5/07	110	7.6	72	109	298.6	18 I	NS	NS	NS	NS	NS	NS
	8/10/07	38.9	1.15	48.8	36.6	125.5	6.17	NS	NS	NS	NS	NS	NS
	1/11/08	17.9	1 U	25.4	18.6	61.90	3.63	NS	NS	NS	NS	NS	NS
	4/18/08	1.56	10	13.4	10.3	25.26	4.41	NS	NS	NS	NS	NS	NS
	07/17/08	1 U	10	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	10/21/08	10	10	10	10	1 U	10	NS	NS	NS	NS	NS	NS
	2/3/09	10	10	10	10	1 U	10	NS	NS	NS	NS	NS	NS
	5/4/09	10	10	1 U	10	1 U	1 U	NS	NS	NS	NS	NS	NS
	8/5/09	0.2105 U	0.1601 U	0.22	0.2310 U	0.22	0.2562 U	NS	NS	NS	NS	NS	NS
	10/28/09	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	0.67 U	NS	NS	NS	NS	NS	NS
by others	9/10/10	0.350 U	0.470 U	0.520 U	0.980 U	0.350 U	0.830 1	NS	NS	NS	NS	NS	NS
oy outoro	11/8/11	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/3/12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/3/12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/20/12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/26/12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/25/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/23/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/20/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/10/14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-29	11/7/03	2900	100 U	4400	2900	10,200	500 U	NS	NS	NS	NS	NS	NS
10100-23	2/18/04	2300	100 0	4400	2300	10,200	no sar		110	NO		NO	140
	5/18/04	3700	18	5000	380	9,098	50 U	NS	NS	NS	NS	NS	NS
	8/26/04	1800	54	4800	560	7,214	250 U	NS	NS	NS	NS	NS	NS
	9/27/05	100	2.5	180	110	393	230 0	NS	NS	NS	NS	NS	NS
	12/28/05	98	1 U	110	43	251	5 U	NS	NS	NS	NS	NS	NS
	1/31/06	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/28/06	2.4	10	7.7	2 U	10	1 U	NS	NS	NS	NS	NS	NS
	9/29/06	1.3	10	1.5	10	2.8	10	NS	NS	NS	NS	NS	NS
	1/5/07	0.14 U	10	1.5 1 U	10	1 U	10	NS	NS	NS	NS	NS	NS
	8/10/07	4.04	10	10	10	4.04	10	NS	NS	NS	NS	NS	NS
	1/11/08	1 U	10	10	10	1 U	10	NS	NS	NS	NS	NS	NS
	4/18/08	10	10	10	10	10	10	NS	NS	NS	NS	NS	NS
	07/17/08	10	10	10	10	10	10	NS	NS	NS	NS	NS	NS
	10/21/08	10	10	10	10	10	10	NS	NS	NS	NS	NS	NS
	2/3/09	10	10	10	10	10	10	NS	NS	NS	NS	NS	NS
	5/4/09	10	10	10	10	10	10	NS	NS	NS	NS	NS	NS
	5/4/09 8/5/09	1.23	0.1601 U	0.1959 U	0.2310 U	1.23	0.7800	NS	NS	NS	NS	NS	NS
	10/28/09	0.94	0.1601 U 0.48 U	0.1959 U 0.45 U	0.2310 U 0.82 U	0.94	0.7800 0.67 U	NS	NS	NS	NS	NS	NS
								NS	NS	NS	NS	NS	NS
ov others	2/23/10 9/10/10	NS 5.3	NS 0.470 U	NS 0.520 U	NS 0.980 U	NS 5.3	NS 0.440 U	NS	NS	NS	NS	NS	NS
by others	9/10/10					23.03		NS	NS	NS	NS	NS	NS
	11/5/10	9.15	0.48 U	7.12	6.76		0.67 U						
	11/8/11	0.8	0.48 U	0.45 U	0.87 U	0.8	0.67 U	NS	NS	NS	NS	NS	NS

Facility ID#: 118839176

## Facility Name: Combs Oil Bulk Plant

See notes at end of table.

Sa	mple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total VOAs	MTBE	EDB	1,2-Di- chloro- ethane	Total Arsenic	Total Cad- mium	Total Chro- mium	Total Lead
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-30	11/6/03	2	1 U	1.5	1 U	3.5	5 U	NS	NS	NS	NS	NS	NS
	2/18/04	3.5	1 U	1 U	1 U	3.5	5 U	NS	NS	NS	NS	NS	NS
	5/18/04	8.7	1 U	1 U	1 U	8.7	5 U	NS	NS	NS	NS	NS	NS
	8/26/04	29	2.6	6.9	20	58.5	5 U	NS	NS	NS	NS	NS	NS
	9/28/05	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS	NS	NS	NS
	12/28/05	1 U	1 U	1 U	2 U	1 U	20	NS	NS	NS	NS	NS	NS
	3/29/06	1 U	1 U	1 U	2 U	1 U	16	NS	NS	NS	NS	NS	NS
	9/29/06	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	1/4/07	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	1/11/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	4/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	7/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	10/21/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	2/3/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	5/4/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	8/5/09	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	0.2562 U	NS	NS	NS	NS	NS	NS
	10/28/09	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	0.67 U	NS	NS	NS	NS	NS	NS
	2/23/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
by others	9/10/10	0.350 U	0.470 U	0.520 U	0.980 U	0.350 U	0.830 I	NS	NS	NS	NS	NS	NS
MW-31	11/6/03	1 U	1.8	1.9	3	6.70	5 U	NS	NS	NS	NS	NS	NS
	2/18/04						no sa	mple					
	5/18/04	1 U	1 U	1 U	1 U	1 U	5 U	NS	NS	NS	NS	NS	NS
	8/26/04	1 U	1 U	1 U	1 U	1 U	5 U	NS	NS	NS	NS	NS	NS
	9/28/05	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS	NS	NS	NS
	12/28/05	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS	NS	NS	NS
	3/28/06	1 U	1 U	1 U	2 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	9/29/06	1 U	1 U	1 U	2 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	1/5/07	1 U	1 U	1 U	2 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	1/11/08	1 U	1 U	1 U	2 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	4/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	7/17/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	10/21/08	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	2/3/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	5/4/09	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	8/5/09	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	0.2562 U	NS	NS	NS	NS	NS	NS
	10/28/09	0.36 U	0.48 U	0.45 U	0.82 U	0.36 U	0.67 U	NS	NS	NS	NS	NS	NS
MW-32	1/31/06	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS	NS	NS	NS
MW-33	1/31/06	1 U	1 U	1 U	2 U	1 U	5 U	NS	NS	NS	NS	NS	NS
	2/23/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/3/12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-34	8/20/12	0.160 U	0.140 U	0.190 U	0.510 U	0.140 U	0.180 U	NS	NS	NS	NS	NS	NS
	11/26/12	0.36 U	0.48 U	0.45 U	0.87 U	0.36 U	0.67 U	NS	NS	NS	NS	NS	NS
	2/25/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/23/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
HRL	3/14/02	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	6/10/02	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	9/9/02	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
	12/11/02	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	NS	NS	NS	NS
GC	CTLs	1**	40**	30**	20**	NA	20	0.02**	3**	10**	5**	100**	15**
NA	DCs	100	400	300	200	NA	200	2	300	100	50	1,000	150

Notes: NS = Not Sampled.

GCTLs = Groundwater Cleanup Target Levels specified in Table I of Chapter 62-777, F.A.C.

NADCs = Natural Attenuation Default Source Concentrations specified in Table V of Chapter 62-777, F.A.C.

** = As provided in Chapter 62-550, F.A.C.

U = Constituent was not detected to the level indicated; I = concentration is between the method detection limit and the practival quantitative limit.

Facility ID#: 118839176

#### Facility Name: Combs Oil Bulk Plant

Sam	ple	TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-2	2/9/99	NS	1,419	1 U	1 U	29	37	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-4	2/9/99	NS	74	1 U	1 U	21	25	1 U	1 U	1 U	24.00	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-5	2/9/99	NS	22.0	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	6/16/03	NS	23	5.9	3.7	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	11/8/11	160 U	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.060 U	0.043 U	0.113 U	0.160 U	0.047 U	0.128 U	0.067 U	0.044 U	0.023 U	0.052 U	0.054 U	0.004 U	0.044 U
	1/3/12 4/3/12	307 1	0.173 U 0.173 U	0.153 U 0.153 U	0.160 U 0.160 U	0.047 U 0.047 U	0.098 U 0.098 U	0.060 U	0.043 U 0.043 U	0.113 U	0.160 U 0.160 U	0.047 U 0.059 I	0.128 U 0.128 U	0.067 U 0.067 U	0.044 U 0.044 U	0.023 U	0.052 U 0.052 U	0.054 U 0.054 U	0.004 U 0.004 U	0.044 U 0.044 U
	4/3/12 8/20/12	170 I NS	0.173 U NS	0.153 U NS	0.160 U	0.047 0 NS	0.098 U NS	0.060 U NS	0.043 U NS	0.113 U NS	0.160 U NS	0.0591 NS	0.128 U NS	0.067 U NS		0.023 U	0.052 U NS	0.054 U NS	0.004 U NS	0.044 U NS
	11/26/12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS	NS NS	NS	NS NS	NS	NS
	2/25/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/23/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/20/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/10/14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3010011	-						-								-			-	
MW-6	2/9/99	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP
	6/16/03	NS	510	1400	1800	100	10 U	10	10	10	190	360	10	10	10	10	10	10	10	1 U
	11/7/03	9,700	12	37	17	2.8	1 U	1 U	10	10	3.6	3.3	1 U	1 U	10	10	1 U	1 U	10	1 U
	2/18/04	NS	1 U	5.5	1 U	1.5	1 U	1 U	1 U	1 U	1.3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/18/04	NS	25	13	16	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/26/04	NS	10 U	16	12	13	10 U	1 U	1 U	1 U	15	23	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/28/05	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/21/05	NS	16	34	30	2.7	1 U	1 U	1 U	1 U	2.5	1.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/28/05	NS	4.8	6	7.5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	3/29/06	NS	19	36	46	2.5	1 U	1 U	1 U	1 U	2.5	2.3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	1/4/07	NS	6.9	12	13	1.2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	1/11/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/17/08	NS	4.56	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	7/17/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	10/21/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/3/09	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/4/09	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.29	1.20	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/5/09	NS	0.037	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.001 U	0.001 U	0.099	0.001 U	0.001 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U
	10/28/09	NS	0.173 U	0.153 U	0.473	0.218	0.098 U	0.098 U	0.098 U	0.098 U	0.160 U	0.160 U	0.128 U	0.067 U	0.067 U	0.067 U	0.052 U	0.054 U	0.054 U	0.054 U
	2/23/10	3,495	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
by others	9/10/10	NS NS	NS	NS	NS	NS	NS	NS NS	NS NS	NS NS	NS	NS	NS	NS	NS NS	NS NS	NS	NS	NS NS	NS NS
	11/5/10	NS 1,236	NS	NS	NS	NS	NS	NS NS	NS NS	NS NS	NS	NS	NS	NS	NS NS	NS NS	NS	NS	NS NS	NS NS
	11/8/11	3,827	NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS	NS	NS
	1/3/12 4/3/12	3,827	NS NS	NS NS	NS NS	NS NS	NS	NS	NS	NS	NS NS	NS NS	NS NS	NS NS	NS	NS	NS NS	NS	NS	NS
	4/3/12 2/25/13	4,582	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/23/13	4,382	NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/23/13	2,961	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/10/14	6,210	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/19/14	2,170	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/19/15	9.560	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/23/15	1,300	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/16/16	1,100	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/21/16	3,200	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/19/17	760	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3110111							-		-									-	

Facility ID#: 118839176

#### Facility Name: Combs Oil Bulk Plant

San	nple	TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-7	2/9/99	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP
	6/16/03	NS	140	100	130	9.4	1 U	1 U	1 U	1 U	10	16	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	11/7/03	26,000	14	15	14	1.9	1 U	1 U	1 U	1 U	2.8	3.0	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/18/04	NS	13	7.4	7.8	1.2	1 U	1 U	1 U	1 U	1.6	1.5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/18/04	NS	66	34	46	1.7	1 U	1 U	1 U	1 U	2.4	3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/26/04	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/27/05	NS	19	15	14	2	1 U	1 U	1 U	1 U	2	2.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/28/05	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	3/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	10	1 U	1 U	1 U	10	1 U	1 U	1 U	1 U	1 U	1 U
	9/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	1/4/07	NS	7.5	8.8	7.2	1.2	1 U	1 U	1 U	1 U	1.1	1 U	1 U	1 U	10	1 U	1 U	1 U	1 U	10
	8/10/07	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/11/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/17/08	NS	10	1 U	10	1 U	10	1 U	10	10	1 U	10	10	10	10	1 U	10	10	10	1 U 1 U
	7/17/08	NS NS	10	10	10	10	10	10	10	10	10	1 U	1 U	10	10	10	10	1 U	10	10
	10/21/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	10
	2/3/09	NS	10	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	10	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	10	1 U 1 U	1 U 1 U	1 U 1 U	10
	5/4/09 8/5/09	NS	1 U 0.463		0.716	0.003 U	-		0.003 U		1 U		-	-	-	10	-	-	0.002 U	0.002 U
	10/28/09	NS	0.463 0.173 U	0.527 0.153 U	0.160 U	0.003 U	0.003 U 0.098 U	0.003 U 0.098 U	0.003 U	0.003 U 0.098 U	0.260 0.160 U	0.001 U 0.160 U	0.001 U 0.128 U	0.001 U 0.067 U	0.001 U 0.067 U	0.001 U 0.067 U	0.001 U 0.052 U	0.002 U 0.054 U	0.002 U 0.054 U	0.054 U
	2/23/10	16,500	0.173 U NS	0.153 U NS	0.160 U	0.047 U NS	0.098 U NS	0.098 U NS	0.098 U NS	0.098 U NS	0.100 U	0.180 C	0.128 0 NS	0.007 0 NS	0.087 0 NS	NS	0.032 U NS	0.034 U NS	0.034 0 NS	NS
	3/4/10	428 1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
by others	9/10/10	12,100	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
by building	11/8/11	28.367	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/3/12	30,299	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/3/12	12,972	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/20/12	12,390	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/26/12	11,486	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/25/13	11,214	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/23/13	12,748	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/20/13	19,982	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/10/14	27,386	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/19/14	15,100	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/19/15	17,800	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/23/15	16,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/16/16	16,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/21/16	7,900	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/19/17	24,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

Facility ID#: 118839176

#### Facility Name: Combs Oil Bulk Plant

Sam	ple	TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-8	2/9/99	NS	32.0	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	3/14/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	6/10/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/9/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/11/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	6/16/03	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	11/7/03	720 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/18/04	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/26/04	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/28/05	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/28/05	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/29/06	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/29/06	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/5/07	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/10/07	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/11/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/18/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/17/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/21/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/3/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/4/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/5/09	NS NS	NS	NS	NS	NS	NS	NS NS	NS NS	NS NS	NS	NS	NS	NS	NS NS	NS NS	NS	NS	NS NS	NS NS
	10/28/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/21/2010	169 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/23/10 6/23/10	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS	NS	NS NS	NS NS	NS NS	NS NS	NS	NS	NS NS	NS NS	NS	NS
here with a set	9/10/10	934.00			NS	NS		NS	NS	NS			NS		NS	NS			NS	NS
by others	9/10/10	NS	NS NS	NS NS	NS	NS	NS NS	NS	NS	NS	NS NS	NS NS	NS	NS NS	NS	NS	NS NS	NS NS	NS	NS
	11/8/11	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/3/12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/3/12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/20/12	NS	0.220 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/26/12	NS	0.220 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/25/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/23/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/20/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/10/14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-10	2/9/99	NS	50	10	10	3 U	3 U	NS	NS	NS	5 U	10	10	10	NS	NS	10	10	NS	NS
	6/16/03	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

Facility ID#: 118839176

#### Facility Name: Combs Oil Bulk Plant

Sam	ple	TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-11	5/11/99	NS	1.3	1 U	1 U	1 U	1 U	NS	NS	NS	1 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	NS
MW-11R	6/16/03	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/6/03	2,100.00	4.7	4	5.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/18/04										no sample									
	5/18/04	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/26/04	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/28/06	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/29/06	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/5/07	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/11/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/18/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/17/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/21/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/3/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/4/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/5/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/28/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
by others	9/10/10	235.00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-12	2/9/99	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP	FP
MW-12R	3/14/02	NS	24	11	15	1 U	1 U	1 U	1 U	1 U	1.2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	6/10/02	NS	82	43	57	1.5	1 U	1 U	1 U	1 U	2	1.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/9/02	NS	3.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/11/02	NS	36	17	22	1.2	1 U	1 U	1 U	1 U	1.1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	11/6/03	3,100.00	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/18/04	NS	1.1	1.5	1.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/18/04	NS	2	1.8	2.3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/26/04	NS	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/28/05	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/28/05	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	3/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	1/4/07	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	1/11/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/18/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-13	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	6/16/03	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/31/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

Facility ID#: 118839176

#### Facility Name: Combs Oil Bulk Plant

San	nple	TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-14	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-15	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-16	2/9/99	NS	7.0	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-17	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-18	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	NS	NS	NS	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	4/3/12	222	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-19	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	4/3/12	426 I	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-20	2/9/99	NS	5 U	1 U	1 U	3 U	3 U	NS	NS	NS	5 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	NS
MW-21	2/9/99	NS	10.0	1 U	1 U	3 U	3 U	NS	NS	NS	5 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	NS
MW-21R	6/16/03	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1 U
	11/6/03	2,500.00	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/18/04	NS	2	2.2	1.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/18/04	NS	2.8	2.4	3.1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/26/04	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/28/05	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/28/05	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	3/28/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	10	1 U	1 U	1 U	10	1 U	1 U	1 U	1 U	1 U	1 U
	1/4/07	NS	1 U	1 U	1 U	1 U	1 U	1 U	10	10	1 U	1 U	1 U	10	10	10	1 U	1 U	1 U	1 U
	4/18/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/17/08	NS	1 U	1 U	1 U	10	1 U	1 U	1 U	1 U	1 U	1 U	1 U	10	1 U	1 U	1 U	1 U	1 U	1 U
	10/21/08	NS	1 U	1 U	1 U	10	1 U	1 U	1 U	10	1 U	1 U	1 U	10	10	1 U	10	1 U	1 U	1 U 1 U
	2/3/09	NS NS	10	10	1 U	10	10	10	10	10	1 U	1 U	10	10	10	1 U	10	10	10	10
	5/4/09	NS	1 U	1 U	1 U	10	1 U	1 U	1 U	10	1 U	1 U	1 U	10	1 U	10	10	1 U	1 U	1 U 0.002 U
	8/5/09	NS	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U
bu oth our	10/28/09 9/10/10	115.00	0.173 U NS	0.153 U NS	0.160 U	0.047 U	0.098 U	0.098 U NS	0.098 U NS	0.098 U NS	0.160 U NS	0.160 U NS	0.128 U	0.067 U	0.067 U NS	0.067 U NS	0.052 U	0.054 U	0.054 U NS	0.05 U NS
by others	9/10/10	115.00	NS	NS	NS	NS	NS	си	NЭ	NS	NS	NS	NS	NS	INS	си	NS	NS	си	NS

Facility ID#: 118839176

#### Facility Name: Combs Oil Bulk Plant

San	nple	TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-22	5/11/99	NS	FP	FP	FP	FP	FP	NS	NS	NS	FP	FP	FP	FP	NS	NS	FP	FP	NS	NS
MW-22R	3/14/02	NS	52	21	32	1 U	1 U	1 U	1 U	1 U	1.4	1.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	6/10/02	NS	48	72	1 U	2.5	1.7	1 U	1 U	1 U	2.8	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/9/02	NS	35	17	28	1 U	1 U	1 U	1 U	1 U	1.2	1.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/11/02	NS	83	32	51	1.3	1 U	1 U	1 U	1 U	1.7	25	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	11/7/03	5,000.00	35	10	26	1 U	1 U	1 U	1 U	1 U	1	1.3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/18/04	NS	8.5	8.8	14	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/18/04	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/26/04	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/27/05	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/28/05	NS	2.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	3/28/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/29/06	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	1/4/07	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8/10/07	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/11/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/17/08	NS	1 U	10	1 U	1 U	1 U	1 U	1 U	10	1 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	NS
	7/17/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	10	1 U	NS	NS	1 U	1 U	NS	NS
	10/21/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	NS
	2/3/09	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	10	1 U	1 U	1 U	1 U	NS	NS	1 U	1 U	NS	NS
	5/4/09	NS NS	1 U	1 U	1 U	10	1 U	10	1 U	10	1 U	1 U	1 U	10	NS	NS	10	1 U	NS	NS 0.002 U
	8/5/09	NS	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.001 U	0.001 U	0.010	0.231	0.001 U	0.001 U	0.011	0.002 U	0.002 U	0.002 U 0.054 U
by others	10/28/09 9/10/10	46 U	0.173 U NS	0.153 U NS	0.160 U NS	0.047 U NS	0.098 U NS	0.098 U NS	0.098 U NS	0.098 U NS	0.160 U NS	0.160 U NS	0.128 U NS	0.067 U NS	0.160 U NS	0.160 U NS	0.052 U NS	0.054 U NS	0.054 U NS	0.034 0 NS
MW-23	2/9/99	48 U NS	5 U	10	1 U	3 U	30	10	110	10	5 U	1 U	1 U	1 U	10	10	10	1 U	10	10
MW-25	2/9/99	NS	5 U	10	10	30	30	10	10	10	5 U	10	10	10	10	10	10	10	10	10
MW-26	5/11/99	NS	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
MW-26R	8/20/12	NS	1.18	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
WINA-TOL	8/20/12	NS	1.18 NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-27	5/11/99	NS	1.7	10	10	10	10	10	10	10	10	10	10	103	10	10	10	10	10	10
11111-27	3/11/99		1	1 '0	1 10	10	10	10	1 10	1 10	10		1 .0	1 '0	1 .0		1 10	1 .0	1 10	1 10

Facility ID#: 118839176

#### Facility Name: Combs Oil Bulk Plant

Sam	nple	TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-28	11/7/03	4,600.00	14	12	13	2	1 U	1 U	1 U	1 U	2.7	4.9	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/18/04	NS	29	21	26	2.2	1 U	NS	NS	NS	3.2	5.8	1 U	1 U	NS	NS	1 U	1 U	1 U	1 U
	5/18/04	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/26/04	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/27/05	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/28/05	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/29/06	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/29/06	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/5/07	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/10/07	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/11/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/18/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	07/17/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/21/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/3/09	NS	NS	NS	NS	NS	NS	NS	NS NS	NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS
	5/4/09	NS NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS	NS NS	NS NS	NS	NS	NS NS	NS
	8/5/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/28/09	11,200	NS	NS	NS	NS	NS		-		NS	NS	NS	NS			NS	NS		
by others	9/10/10	7,546	0.127 0.173 U	0.126 0.153 U	0.134 0.160 U	0.320 0.047 U	0.025 U 0.098 U	0.025 U	0.025 U 0.098 U	0.025 U 0.098 U	0.082 0.160 U	0.113 0.047 U	0.072 0.128 U	0.015 U	0.015 U 0.067 U	0.015 U 0.067 U	0.015 U 0.052 U	0.025 U 0.054 U	0.025 U 0.054 U	0.025 U 0.054 U
	11/8/11	9,396	0.173 U	0.153 U	0.160 U	0.047 0	0.098 U	0.098 U 0.098 U	0.098 U	0.098 U	0.160 U	0.047 0	0.128 0	0.067 U 0.067 U	0.067 U	0.067 U	0.052 U	0.054 U	0.054 U	0.054 U
	4/3/12	3,800	0.173 U	0.153 U	0.160 U	0.253 0.047 U	0.098 U	0.098 U	0.098 U	0.098 U	0.160 U	0.138	0.336 0.128 U	0.067 U	0.067 U	0.067 U	0.052 U	0.054 U	0.054 U	0.054 U
	8/20/12	5,326	0.173 U NS	0.153 U NS	0.100 U	0.047 U NS	0.098 0 NS	0.098 0 NS	0.098 U NS	0.098 U NS	0.100 U	0.1381 NS	0.128 0 NS	NS	0.087 0 NS	NS	0.052 0 NS	0.034 0 NS	0.034 U NS	0.034 0 NS
	11/26/12	15,372	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/25/13	8,981	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/23/13	1,006	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/20/13	28,520	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/10/14	17,450	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/19/14	10,100	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/19/15	5,840	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/23/15	12,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/16/16	9,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/21/16	14,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/19/17	5,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

Facility ID#: 118839176

#### Facility Name: Combs Oil Bulk Plant

San		TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-29	11/7/03 2/18/04	30,000.00	54	20	36	1.3	1 U	1 U	1 U	1 U	1.9 no sample	3.2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5/18/04	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/26/04	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/27/05	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/28/05	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/31/06	NS	5.5	1.6	1.9	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	3/28/06	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/29/06	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/5/07	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/10/07	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/11/08	NS NS	NS	NS	NS	NS	NS	NS NS	NS NS	NS NS	NS	NS	NS	NS	NS NS	NS NS	NS	NS	NS NS	NS NS
	4/18/08	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS	NS NS	NS	NS NS	NS NS	NS NS	NS	NS NS	NS	NS NS	NS NS	NS NS	NS
	07/17/08	NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS
	2/3/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/4/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/5/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/28/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/23/10	959.00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
by others	9/10/10	2,350.00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/5/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/8/11	976.00	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.098 U	0.098 U	0.098 U	0.160 U	0.047 U	0.128 U	0.067 U	0.067 U	0.067 U	0.052 U	0.054 U	0.054 U	0.054 U
	4/3/12	216 I	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.098 U	0.098 U	0.098 U	0.160 U	0.047 U	0.128 U	0.067 U	0.067 U	0.067 U	0.052 U	0.054 U	0.054 U	0.054 U
MW-30	11/6/03	5,600.00	1 U	10	1 U	1 U	1 U	NS	NS	NS	1 U	1 U	1 U	10	NS	NS	1 U	1 U	NS	10
	2/18/04	NS	1 U	2.2	3	10	1 U	1 U	10	10	1 U	1 U	1 U	10	10	1 U	1 U	1 U	1 U	1 U 1 U
	5/18/04 8/26/04	NS NS	7.4 1 U	4.2 1 U	6.5 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	10
	9/28/05	NS	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	12/28/05	NS	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	3/29/06	NS	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	9/29/06	NS	1 U	10	1 U	10	10	10	10	10	10	10	1 U	1 U	10	10	10	1 U	1 U	1 U
	1/4/07	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	1/11/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/17/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	7/17/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	10/21/08	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/3/09	NS	10	10	1 U	10	1 U	1 U	1 U	10	1 U	1 U	1 U	10	1 U	1 U	1 U	10	1 U	10
	5/4/09	NS	10	10	1 U	1 U	1 U	10	1 U	1 U	1 U	1 U	1 U	1 U	10	1 U	1 U	1 U	1 U	1 U
	8/5/09	NS NS	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.001 U	0.001 U	0.001 U	0.010 U	0.010 U	0.010 U	0.001 U	0.002 U	0.002 U	0.002 U
	10/28/09 2/23/10	509 1	0.173 U NS	0.153 U NS	0.160 U NS	0.047 U NS	0.098 U NS	0.098 U NS	0.098 U NS	0.098 U NS	0.160 U NS	0.160 U NS	0.128 U NS	0.067 U NS	0.067 U NS	0.067 U NS	0.052 U NS	0.054 U NS	0.054 U NS	0.054 U NS
			INO	UNO	IN O	IN O	UNO				IN O	NO NO	UNO I	L ING			G/I	110		

Facility ID#: 118839176

#### Facility Name: Combs Oil Bulk Plant

#### See notes at end of table.

Sar	nple	TRPHs	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-31	11/6/03	650 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/18/04		no sample																	
	5/18/04	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/26/04	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/28/05	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/28/05	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/28/06	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/29/06	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/5/07	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/11/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/17/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/17/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/21/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/3/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/4/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	8/5/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/28/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-32	1/31/06	260.00	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
MW-33	1/31/06	300.00	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	2/23/10	169 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/3/12	186 I	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-34	8/20/12	651.00	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.047 U	0.047 U	0.047 U	0.160 U	0.047 U	0.128 U	0.067 U	0.047 U	0.047 U	0.052 U	0.054 U	0.054 U	0.054 U
	11/26/12	167 I	0.173 U	0.153 U	0.160 U	0.047 U	0.098 U	0.047 U	0.047 U	0.047 U	0.160 U	0.047 U	0.128 U	0.067 U	0.047 U	0.047 U	0.052 U	0.054 U	0.054 U	0.054 U
	2/25/13	183 I	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/23/13	568.00	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
HRL	3/14/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	6/10/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	9/9/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	12/11/02	NS	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
GC	TLs	5,000	14	28	28	20	210	2,100	210	280	280	210	210	0.2**	0.05 ^a	0.05 ^a	0.5	4.8	0.005 ^a	0.05 ^a
NA	DCs	50,000	140	280	280	200	2,100	21,000	2,100	2,800	2,800	2,100	2,100	20	5	5	50	480	0.5	5

NS = Not Sampled.

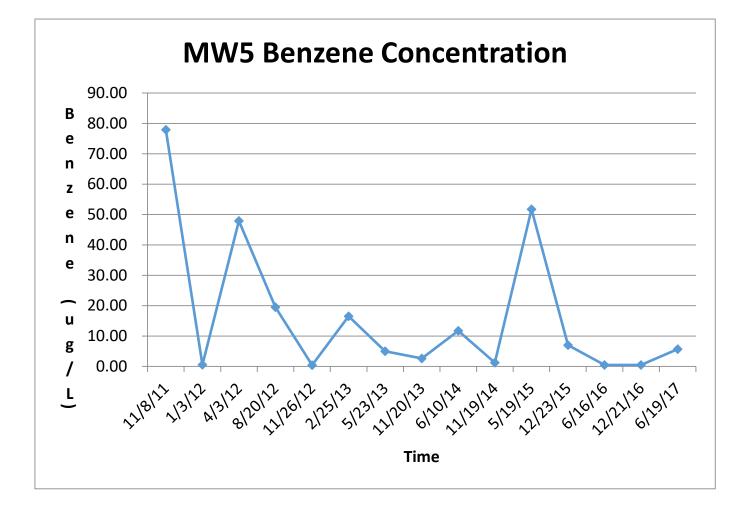
GCTLs = Groundwater Cleanup Target Levels specified in Table I of Chapter 62-777, F.A.C.

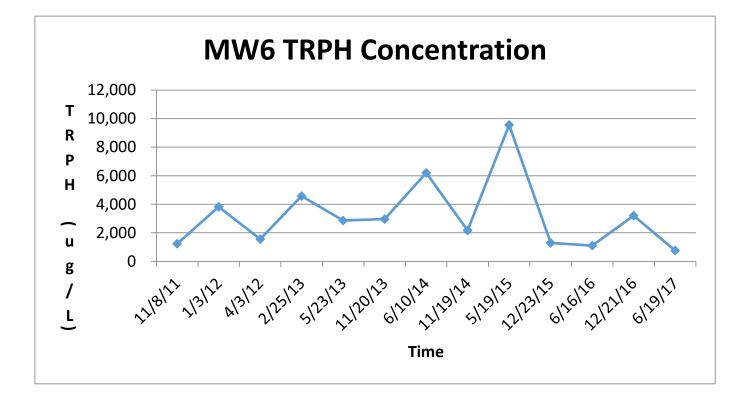
NADCs = Natural Attenuation Default Source Concentrations specified in Table V of Chapter 62-777, F.A.C.

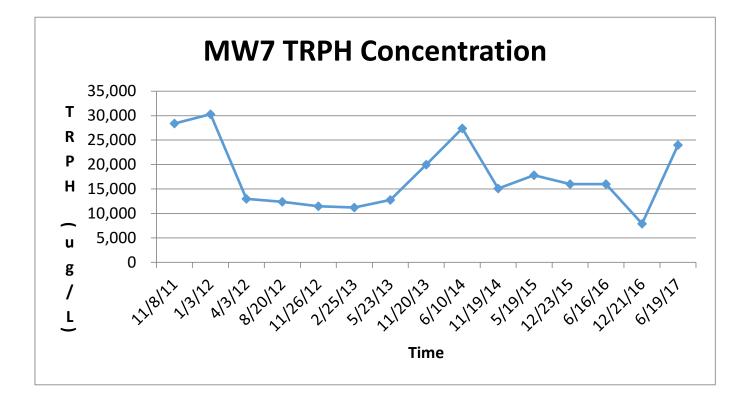
** = As provided in Chapter 62-550, F.A.C.

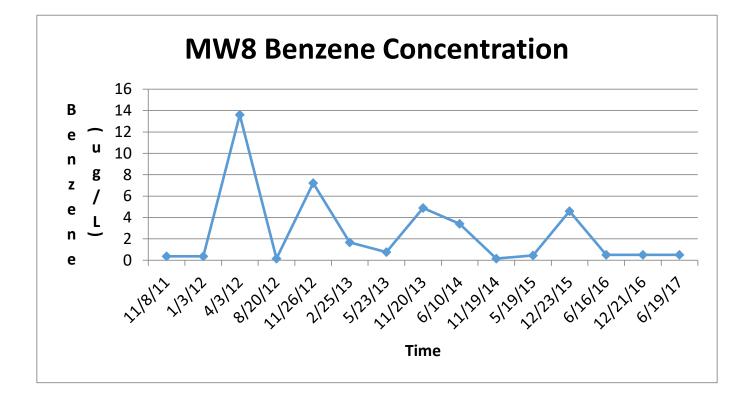
a = See the October 12, 2004 "Guidance for the Selection of Analytical Methods and for the Evaluation of Practical Quantitation Limits" to determine how to evaluate data when the CTL is lower than the PQL.

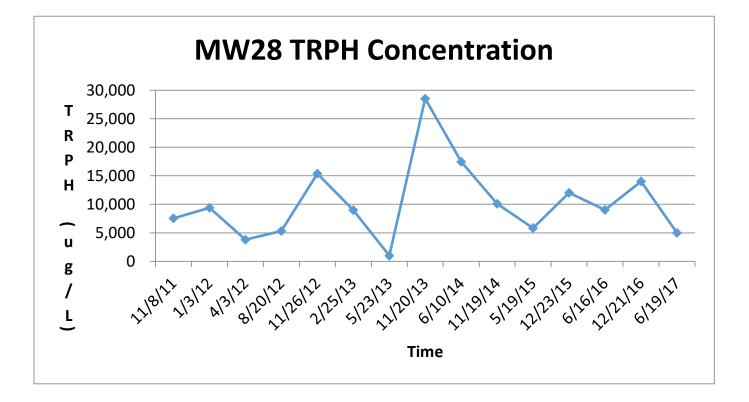
U = Constituent was not detected to the level indicated; I = concentration is between the method detection limit and the practival quantitative limit.


# TABLE 1c:GROUNDWATER MONITORING WELL ANALYTICALSUMMARY - NA PARAMETERS


Facility ID#: 11/8839176


Facility Name: Combs Oil Co. Bulk Plant


Sa	mple	Nitrate	Dissolved Iron	Orthophosphate Phosphorus	Sulfate	Methane		
Location	Date	(mg/L)	(µg/L)	(mg/L)	(mg/L)	(ug/L)		
MW6	11/19/2014	0.160	5000	0.00600	4.89	1340		
MW8	11/19/2014	0.129	3240	0.0118	2.78	896		
MW28	11/19/2014	0.106 U	506	0.201	31.6	1400		


U = Constituent not detected to the level shown.











**APPENDIX C** 



Advanced Environmental Laboratories, Inc 9610 Princess Palm Ave Tampa, FL 33619 Payments: P.O. Box 551580 Jacksonville, FL 32255-1580

> Phone: (813)630-9616 Fax: (813)630-4327

June 27, 2017

Jeff Morgan MDM Services 1055 Kathleen Rd Lakeland, FL

RE: Workorder: T1710585 Combs Oil

Dear Jeff Morgan:

Enclosed are the analytical results for sample(s) received by the laboratory on Tuesday, June 20, 2017. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. The analytical results for the samples contained in this report were submitted for analysis as outlined by the Chain of Custody and results pertain only to these samples.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

angela Harlan

Angela Harlan - Client Services Manager AHarlan@AELLab.com

Enclosures

Report ID: 493659 - 794922

Page 1 of 11

#### **CERTIFICATE OF ANALYSIS**





### SAMPLE SUMMARY

Workorder: T1710585 Combs Oil

Lab ID	Sample ID	Matrix	Date Collected	Date Received
T1710585001	MW-5	Water	6/19/2017 11:01	6/20/2017 10:30
T1710585002	MW-6	Water	6/19/2017 11:17	6/20/2017 10:30
T1710585003	MW-7	Water	6/19/2017 11:35	6/20/2017 10:30
T1710585004	MW-8	Water	6/19/2017 11:51	6/20/2017 10:30
T1710585005	MW-28	Water	6/19/2017 12:07	6/20/2017 10:30

Report ID: 493659 - 794922

Page 2 of 11

#### **CERTIFICATE OF ANALYSIS**





# ANALYTICAL RESULTS

Workorder: T1710585 Combs Oil

Lab ID: <b>T1710585001</b>				Date Received:	06/20/17 10:30	Matrix:	Water	
Sample ID: MW-5				Date Collected:	06/19/17 11:01			
Sample Description:				Location:				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	paration N	Method: S	W-846 5030B				
	Ana	lytical Me	thod: SW	-846 8260B				
Benzene	5.7		ug/L	1	1.0	0.17	6/21/2017 20:59	т
Ethylbenzene	0.26	U	ug/L	1	1.0	0.26	6/21/2017 20:59	Т
Methyl tert-butyl Ether (MTBE)	3.4		ug/L	1	1.0	0.41	6/21/2017 20:59	Т
Toluene	0.45	U	ug/L	1	1.0	0.45	6/21/2017 20:59	Т
Xylene (Total)	1.1	U	ug/L	1	3.0	1.1	6/21/2017 20:59	Т
1,2-Dichloroethane-d4 (S)	88		%	1	70-128		6/21/2017 20:59	
Toluene-d8 (S)	102		%	1	77-119		6/21/2017 20:59	
Bromofluorobenzene (S)	98		%	1	86-123		6/21/2017 20:59	
Lab ID: <b>T1710585002</b>				Date Received:	06/20/17 10:30	Matrix:	Water	
Sample ID: MW-6				Date Collected:	06/19/17 11:17			
Sample Description:				Location:				
				Looalion	Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
SEMIVOLATILES								
Analysis Desc: FL-PRO Analysis, Water	Prep	paration M	Method: F	L-PRO				
	Ana	lytical Me	thod: FL-	PRO				
ТРН	0.76		mg/L	1	0.63	0.56	6/23/2017 11:58	т
o-Terphenyl (S)	91		%	1	82-142		6/23/2017 11:58	
Nonatricontane-C39 (S)	77		%	1	42-193		6/23/2017 11:58	
Lab ID: <b>T1710585003</b>				Date Received:	06/20/17 10:30	Matrix:	Water	
Sample ID: MW-7				Date Collected:	06/19/17 11:35			
Sample Description:				Location:				
					المعانية م	ا م د م د م		
Parameters	Results	Qual	Units	DF	Adjusted PQL	Adjusted MDL	Analyzed	Lab
						1/11	ADAIV/E0	1 20

Page 3 of 11

### **CERTIFICATE OF ANALYSIS**





# ANALYTICAL RESULTS

Workorder: T1710585 Combs Oil

Lab ID: <b>T1710585003</b>				Date Received:	06/20/17 10:30	Matrix:	Water	
Sample ID: MW-7				Date Collected:	06/19/17 11:35			
Sample Description:				Location:				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
Analysis Desc: FL-PRO Analysis, Water	Prep	paration I	Method: F	L-PRO				
	Ana	lytical Me	thod: FL-	PRO				
ТРН	24		mg/L	1	0.63	0.56	6/23/2017 06:27	Т
o-Terphenyl (S)	191	J4	%	1	82-142		6/23/2017 06:27	
Nonatricontane-C39 (S)	64		%	1	42-193		6/23/2017 06:27	
Lab ID: <b>T1710585004</b>				Date Received:	06/20/17 10:30	Matrix:	Water	
Sample ID: MW-8				Date Collected:	06/19/17 11:51			
Sample Description:				Location:				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lal
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	paration I	Method: S	W-846 5030B				
	Ana	lytical Me	thod: SW	-846 8260B				
Benzene	0.37	I	ug/L	1	1.0	0.17	6/21/2017 21:47	Т
Ethylbenzene	0.26	U	ug/L	1	1.0	0.26	6/21/2017 21:47	Т
Methyl tert-butyl Ether (MTBE)	0.41	U	ug/L	1	1.0	0.41	6/21/2017 21:47	Т
Toluene	0.45	U	ug/L	1	1.0	0.45		Т
Xylene (Total)	1.1	U	ug/L	1	3.0	1.1		Т
1,2-Dichloroethane-d4 (S)	103		%	1	70-128		6/21/2017 21:47	
Toluene-d8 (S) Bromofluorobenzene (S)	100 98		% %	1 1	77-119 86-123		6/21/2017 21:47 6/21/2017 21:47	
Lab ID: <b>T1710585005</b>					06/20/17 10:30	Matrix:	Water	
Sample ID: MW-28				Date Collected:	06/19/17 12:07			
Sample Description:				Location:				
					Adjusted	Adjusted		
	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lat
Parameters								
SEMIVOLATILES								
Parameters SEMIVOLATILES Analysis Desc: FL-PRO Analysis, Water	Prep	paration I	Method: F	L-PRO				







Advanced Environmental Laboratories, Inc 9610 Princess Palm Ave Tampa, FL 33619 Payments: P.O. Box 551580 Jacksonville, FL 32255-1580

> Phone: (813)630-9616 Fax: (813)630-4327

# ANALYTICAL RESULTS

Workorder: T1710585 Combs Oil

Lab ID: Sample ID:	T1710585005 MW-28				Date Received: Date Collected:		Matrix:	Water	
Sample Desc	ription:				Location:	Adjusted	Adjusted		
Parameters		Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
TPH o-Terphenyl (\$ Nonatricontar	,	5.0 82 58		mg/L % %	1 1 1	0.63 82-142 42-193	0.56	6/23/2017 06:55 6/23/2017 06:55 6/23/2017 06:55	Т

Report ID: 493659 - 794922

Page 5 of 11

### **CERTIFICATE OF ANALYSIS**





### ANALYTICAL RESULTS QUALIFIERS

#### Workorder: T1710585 Combs Oil

### PARAMETER QUALIFIERS

- U The compound was analyzed for but not detected.
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- J4 Estimated Result

#### LAB QUALIFIERS

T DOH Certification #E84589(AEL-T)(FL NELAC Certification)

Report ID: 493659 - 794922

Page 6 of 11

#### **CERTIFICATE OF ANALYSIS**





Advanced Environmental Laboratories, Inc 9610 Princess Palm Ave Tampa, FL 33619 Payments: P.O. Box 551580 Jacksonville, FL 32255-1580

> Phone: (813)630-9616 Fax: (813)630-4327

### QUALITY CONTROL DATA

Workorder: T1710585 Combs Oil

QC Batch: MS	/t/3203		Analysis Method:	SW-846 8260B	
QC Batch Method: SW	-846 5030B		Prepared:	06/21/2017 12:57	
Associated Lab Samples:	T1710585001, T	1710585004			
METHOD BLANK: 238709	90				
Parameter	Units	Blank Result	Reporting Limit Qualifiers		
VOLATILES					
Methyl tert-butyl Ether (MTBE)	ug/L	0.41	0.41 U		
Benzene	ug/L	0.17	0.17 U		
Toluene	ug/L	0.45	0.45 U		
Ethylbenzene	ug/L	0.26	0.26 U		
Xylene (Total)	ug/L	1.1	1.1 U		
1,2-Dichloroethane-d4 (S)	%	90	70-128		
Toluene-d8 (S)	%	103	77-119		
Bromofluorobenzene (S)	%	95	86-123		

#### LABORATORY CONTROL SAMPLE: 2387091

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
VOLATILES						
Methyl tert-butyl Ether (MTBE)	ug/L	20	18	92	70-130	
Benzene	ug/L	20	19	93	70-130	
Toluene	ug/L	20	21	107	70-130	
Ethylbenzene	ug/L	20	20	100	70-130	
Xylene (Total)	ug/L	60	61	101	70-130	
1,2-Dichloroethane-d4 (S)	%			90	70-128	
Toluene-d8 (S)	%			97	77-119	
Bromofluorobenzene (S)	%			110	86-123	

MATRIX SPIKE & MATRIX	SPIKE DUPL	ICATE: 2387	092	2387	093	Origir	nal: T171	0558003			
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
VOLATILES Methyl tert-butyl Ether (MTBE) Benzene Toluene	ug/L ug/L ug/L	0 0 0	20 20 20	17 19 22	17 19 21	87 95 109	87 97 106	70-130 70-130 70-130	0 2 3	30 30 30	

Report ID: 493659 - 794922

Page 7 of 11

# **CERTIFICATE OF ANALYSIS**





# QUALITY CONTROL DATA

Workorder: T1710585 Combs Oil

	SPIKE DUPLICATE: 2387092			2387093			inal: T171			
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
Ethylbenzene	ug/L	0.36	20	22	21	109	106	70-130	3	30
Xylene (Total)	ug/L	0	60	67	64	111	107	70-130	4	30
1,2-Dichloroethane-d4 (S)	%	90				92	90	70-128	2	
Toluene-d8 (S)	%	99				97	92	77-119	5	
Bromofluorobenzene (S)	%	116				115	115	86-123	0	
QC Batch: EXT	t/2428			Analysis N	lethod:	FL-PF	२०			
QC Batch Method: FL-F						06/22	/2017 10:1	5		
Associated Lab Samples:	6003, T171	Prepared: 0585005								
METHOD BLANK: 238710	7									
			Blank	Reporting						
Parameter	Units	F	Result		Qualifiers					
SEMIVOLATILES										
TPH	mg/L		0.60	0.60	U					
o-Terphenyl (S)	%		85	82-142						
Nonatricontane-C39 (S)	%		63	42-193						
LABORATORY CONTROL	SAMPLE: 2	387108								
LABORATORY CONTROL	SAMPLE: 2		oike	LCS	L	CS	% Rec			
LABORATORY CONTROL	SAMPLE: 2 Units	Sp	bike bnc.	LCS Result	L( % R	CS lec	% Rec Limits C	alifiers		
		Sp						ualifiers		
Parameter	Units	Sp			% R			alifiers		
Parameter SEMIVOLATILES TPH	Units mg/L	Sp	onc.	Result	% R	ec	Limits C	qualifiers		
Parameter SEMIVOLATILES	Units	Sp	onc.	Result	% R	ec 87	Limits C 55-118	lualifiers		
Parameter SEMIVOLATILES TPH o-Terphenyl (S) Nonatricontane-C39 (S)	Units mg/L % %	St Co	3.4	Result 3.0	% R	ec 87 82 63	Limits C 55-118 82-142 42-193			
Parameter SEMIVOLATILES TPH o-Terphenyl (S)	Units mg/L % %	St Co	3.4	Result	% R	ec 87 82 63	Limits C 55-118 82-142			
Parameter SEMIVOLATILES TPH o-Terphenyl (S) Nonatricontane-C39 (S)	Units mg/L % %	St Co	3.4	Result 3.0	% R	ec 87 82 63	Limits C 55-118 82-142 42-193	0568006 % Rec	RPD	Max RPD Qualifiers
Parameter SEMIVOLATILES TPH o-Terphenyl (S) Nonatricontane-C39 (S) MATRIX SPIKE & MATRIX Parameter	Units mg/L % % SPIKE DUPL	Sp Cc ICATE: 2387 Original	3.4 '109 Spike	Result 3.0 2387' MS	% R 110 MSD	ec 87 82 63 Origi MS	Limits C 55-118 82-142 42-193 inal: T1710 MSD	0568006 % Rec	RPD	
Parameter SEMIVOLATILES TPH o-Terphenyl (S) Nonatricontane-C39 (S) MATRIX SPIKE & MATRIX Parameter SEMIVOLATILES	Units mg/L % % SPIKE DUPL Units	Sp Co ICATE: 2387 Original Result	3.4 109 Spike Conc.	Result 3.0 2387 MS Result	% R 110 MSD Result	ec 87 82 63 Origi MS % Rec	Limits C 55-118 82-142 42-193 inal: T1710 MSD % Rec	0568006 % Rec Limit		RPD Qualifiers
Parameter SEMIVOLATILES TPH o-Terphenyl (S) Nonatricontane-C39 (S) MATRIX SPIKE & MATRIX Parameter SEMIVOLATILES TPH	Units mg/L % SPIKE DUPL Units mg/L	Sp Cc ICATE: 2387 Original	3.4 '109 Spike	Result 3.0 2387' MS	% R 110 MSD	ec 87 82 63 Origi MS % Rec 96	Limits C 55-118 82-142 42-193 inal: T1710 MSD % Rec 92	0568006 % Rec Limit 41-101	4	RPD Qualifiers
Parameter SEMIVOLATILES TPH o-Terphenyl (S) Nonatricontane-C39 (S) MATRIX SPIKE & MATRIX Parameter SEMIVOLATILES	Units mg/L % % SPIKE DUPL Units	Sp Co ICATE: 2387 Original Result	3.4 109 Spike Conc.	Result 3.0 2387 MS Result	% R 110 MSD Result	ec 87 82 63 Origi MS % Rec	Limits C 55-118 82-142 42-193 inal: T1710 MSD % Rec	0568006 % Rec Limit		RPD Qualifiers

Report ID: 493659 - 794922

Page 8 of 11

# **CERTIFICATE OF ANALYSIS**





Advanced Environmental Laboratories, Inc 9610 Princess Palm Ave Tampa, FL 33619 Payments: P.O. Box 551580 Jacksonville, FL 32255-1580

> Phone: (813)630-9616 Fax: (813)630-4327

# **QUALITY CONTROL DATA**

Workorder: T1710585 Combs Oil

Report ID: 493659 - 794922

Page 9 of 11

### **CERTIFICATE OF ANALYSIS**





# QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: T1710585 Combs Oil

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
T1710585001	MW-5	SW-846 5030B	MSVt/3203	SW-846 8260B	MSVt/3204
T1710585004	MW-8	SW-846 5030B	MSVt/3203	SW-846 8260B	MSVt/3204
T1710585002	MW-6	FL-PRO	EXTt/2428	FL-PRO	GCSt/1915
T1710585003	MW-7	FL-PRO	EXTt/2428	FL-PRO	GCSt/1915
T1710585005	MW-28	FL-PRO	EXTt/2428	FL-PRO	GCSt/1915

Report ID: 493659 - 794922

Page 10 of 11







6681 Southpoint Parkway Jacksonville, Florida 32216 Office (904) 363-9350 Fax (904) 363-9354

	Queue:	GCSt	
	Batch Number:	1915	
	Dessist		
Ι.	Receipt		64700040000
			S1700919022:
			The above sample arrived in an improperly preserved bottle for FL PRO analysis. The analyst preserved the sample to <2 per method critieria before extraction. No further corrective action was required.
н.	Holding Times		
	Preparation	:	All holding times were met.
	Analysis:		All holding times were met.
III.	Method		
	Analysis:		FL-PRO
	Preparation	:	FL-PRO
IV.	Preparation		
			Sample preparation proceeded normally.
۷.	Analysis		
	A. Calibratio	n:	All acceptance criteria were met.
	B. Blanks:		All acceptance criteria were met.
	C. Surrogate	es:	T1710585003: The control criterion was exceeded for o-Terphenyl in the above sample due to visible matrix interference. The affected surrogate was qualified accordingly. No further corrective action was required.
	D. Spikes:		All acceptance criteria were met.
	E. Internal St	tandard:	All acceptance criteria were met.
	F. Samples:		Sample analyses proceeded normally.
	G. Other:		

I certify that this data package is in compliance with the terms and conditions agreed to by Advanced Environmental Laboratories, Inc. and by the client, both technically and for completeness, except for the conditions detailed above. The Quality Assurance Officer, or designee, as verified by the following signature, has authorized release of the data contained in this data package:

3 0 4	16	Ciler-	CN: AD-051 Form	teceived on Ice	Matrix Code: WW = wastewater		R2-MW	Mu-8	MW-7	Num-1	Sriv	SAMPLE ID	The science of	um Around Time: STANDARD	ampled By: Dr wild Y	Sontact JCAF	100.000	l ä		1055	- BL	
Andre de ce IV	CHAN IN 14	telinquished-by: Date Time	rised 11/1	Yes No Temp taken from sample	SW = surface water							SAMPLE DESCRIPTION			10/ Janis	Teff Moscolin	203-048-1100	8113-646-9130	akeland, Fr. 33805	Kathlen Rd.	MDM SERVICES INC.	Advanced Environmental Laboratories, Inc. Parisa's Carguer Cadavary Viewand
A N MA	they are 2	Received by y y		ple 🛛 Temp from blank 🖾 Where required, pH checked	GW = ground water DW = drinking water O = oil A =		3 LOUZI WOND	15:11 MAND	what in 35 Ger	3 LI 11 4/21/21	2 10-11 miles	Comp DATE TIME	DADAPT DEQUIS Dother		Special Instructions:	Immokater, Sc	FDEP Facility Address	FDEP Facility No: 118839170	PO Number: 20815	Project Number: 20815	Project Name:	U.       Altamonte Springs: 300 Nortkake Bivd. Sta. 1048 • Altanonia Springs, FL 32701 • 407 537, 1564 • Fax 407 537, 1597         U.       Jacksonville:         Starksonville:       Fax 904, 363, 9350 • Fax 904, 363, 9354         v.d.       Tallahassee:       2639 North Avence St., Suite D. Tallahassee, FL 32303 • 650, 219,5274 • Fax 860, 219,5275
1030	17 945	Date Time	by unique id	and the second se	A = air SO = soil SL = sludge		Cul 1	× 3	۶ ۲	Se 2	C 3 X	MATRIX COUNT Filed- Filed- Filed-		anal	YSI:		EQU		)		TTLE & TYPE	8 • Allannonte Springs, FL 32701 • 407 537 1564 • F FL 32216 • 904.363.9350 • Fax 904.363.9354 assee, FL 32303 • 650.219.6274 • Fax 650.219.627
Contact Person: Supplier of Water:	(When PWS Information not otherwise supplied)	FOR DRINKING WATER USE:	J: 9A	Temp. when received (observed)	Preservation Code: 1 = ice H=(HC		×		×.	XX		0 0		T M	~1.0	1.12	u DD					
Phone :	d) PWSID		LT-2 104 A: 3A M: 3A	°C Temp. when received (corrected)	Preservation Code: 1 = ice H=(HCI) S = (H2SO4) N = (HNO3) T = (Sodium Thiosulfate)																	Page_1_of_1         of_1           Gainesville:         4665 \$W 41st Elvid.         Gainesville, FL 33025         952.377.2349         Fax. 952.355.6839           Miramar:         10210 USA Today Way, Miramar, FL 33025         954.889.2269         Fax. 954.989.2281           Miramar:         10210 USA Today Way, Miramar, FL 33025         954.889.2269         Fax. 954.989.2281           Tampa:         0510 Princess Path Ave.         Tampa, FL 33025         954.850.2316         Fax. 954.989.2281
	ļ		S; 1V	ň	Thiosulfate)		295	Do T	8	002	<u>6</u> 2/	LABO	I DR/	ATOR	RY I	.D.	NU	MBI	ER			( 52.355.6639 59.2281 10.4327

SITE SITE LOCATION: 525 E. Main St., Immokalee, FL.														
								<u>ы., іттока</u>		40/0047				
WELL NO:	0-94141			SAMPLI	E ID: MW-5				DATE: 6/	/19/2017				
		TUBIN	<u> </u>	14/5		AING DA				URGE PUMP	TYPE			
WELL DIAMETER	(inches): 4		G TER (inches):		LL SCREEN		STATIC TO WAT	ER (feet): 3.		R BAILER:	19			
WELL VOL	UME PURGE:	1 WELL VC	LUME = (TOT	AL WELL DE	PTH - STA	TIC DEPTH T		WELL CAPAC						
(only lin out	if applicable)		= ( 1'	l feet –	3.00	feet	x 0.65	gallons/foot =	1.710	gallons				
	IT VOLUME PI	JRGE: 1 EQ	UIPMENT VOL.	= PUMP VO	LUME + (TUE	ING CAPACI	ד X אד	UBING LENGTH	) + FLOW	CELL VOLUM	Ε			
(oriny nin our				= g	allons + (	gallo	ons/foot X	feel	) +	gallon	s =	ga	llons	
	MP OR TUBIN	^G 5.0		P OR TUBIN NELL (feet):	⁶ 5.0		IG ED AT: 10:50		110	TOTAL V PURGED	OLUM (gallo	E ns): 2-	20	
TIME     VOLUME PURGED (gallons)     CUMUL. VOLUME (gallons)     PURGE PURGED (gallons)     DEPTH PURGE (gpm)     pH TO (standard (feet)     TEMP. (Standard units)     COND. (circle units) (°C)     DISSOLVED OXYGEN (circle units)     TURBIDITY (NTUs)     COLOR (describe)     ODOF (describe)       to:51     1.40     1.40     20     3.41     6-1     78.2     0.49     0.22     20     Uery     Defra														
10-59	,40	1.80		-		28.2	0.49		18	1-	s. 1	1-	••	
11:01 .40 2.20 .20 3.41 6.1 28.2 0.49 0.19 17														
									1					
								ļ	<u> </u>					
			_		<u> </u>									
WELL CAP	ACITY (Gallon	s Per Foot):	0.75" = 0.02;	1" = 0.04;	1.25" = 0.0	6; 2" = 0.1	6; 3" = 0.37;	4" = 0.65;	5" = 1.02;	6" = 1.47;	12"	= 5.88		
	SIDE DIA. CAI		/Ft.): 1/8* = 0.0 3 = Bailer; 8	006; 3/16 3P = Bladder			26; 5/16* = 0 Submersible Po		0.006; 1 eristaltic Pu	/2* = 0.010;		= 0.016 (Specify		
ronana			J = Danot, 1			LING DA		imp, rr=1	enstante r t		Other	(Opecity	<u>/</u> _	
	BY (PRINT) / A		k	SAMPLEH(S	SIGNATUR			SAMPLING		SAMPL	ING	1.01.5		
	avis/MDM S			TUBING	$\sim$			INITIATED A	<b>`</b>	<u> </u>		11:07		
PUMP OR T	WELL (feet):	5.0			ODE: HDPI			D-FILTERED: Y ion Equipment Ty		FILIER	SIZE:	I	ım -	
FIELD DEC	ONTAMINATIO	DN: PUI	MPY <u>N</u>		TUBING	Y <u>N</u> (re	eplaced)	DUPLICATE	: Y	N				
						TION (includ				SAMPLING		MPLE P		
SAMPLE ID CODE	# CONTAIN <u>ERS</u>	MATERIAL CODE	VOLUME	PRESERVA USED		TOTAL VOL D IN FIELD (I	mL) PH	METH		CODE		LOW A		
MW-5	3	CG	_40 mL	HCL				BTEX/M	TBE	APP		300		
-							_							
<del></del>								_						
REMARKS		I					1							
ORP = C	399													
MATERIAL		AG = Amber S = Silicone;		Clear Glass; O = Other (		High Density F	^{&gt;} olyethylene;	LDPE = Low D	ensity Polye	ethylene; F	P = P	olypropyl	ene;	
SAMPLING		CODES:	APP = After (Th RFPP = Revers	rough) Perist	altic Pump;	B = Bailer; SM = Straw		der Pump; E g Gravity Draln);		ic Submersibl her (Specify)	e Pum	p;		
NOTER 1	The above		stitute all of t							1-111				

IOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. <u>STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)</u> pH:  $\pm$  0.2 units Temperature:  $\pm$  0.2 °C Specific Conductance:  $\pm$  5% Dissolved Oxygen: all readings  $\leq$  20% saturation (see Table FS 2200-2); optionally,  $\pm$  0.2 mg/L or  $\pm$  10% (whichever is greater) Turbidity: all readings  $\leq$  20 NTU; optionally  $\pm$  5 NTU or  $\pm$  10% (whichever is greater)

	ombs Oil						25 E. Main	St., Immokal	ee. FL.				
WELL NO				SAMPL	<u>ب در</u> E ID: MW-6				DATE: 6/	19/201	7		
L					PURC	GING DA	TA	[					
WELL	R (inches): 4	TUBI	NG ETER (inches):		ELL SCREEN		STATIC TO WAT	DEPTH TER (leet): Z.G	0 P	URGE PUI R BAILER	_	E	
WELL VO				TAL WELL DE	PTH - STA	TIC DEPTH 1	OWATER)	WELL CAPACI	TY				
EOUIDHE	NT VOLUME D		= ( 1	1 feet -	2.9	O feet	<u>x 0.65</u>	gallons/foot = TUBING LENGTH)	1.29	galk	ons		
	it if applicable)	UNGE: TEU			gallons + (108		ons/foot X	feet)			lions =		allons
		^G 4.5			IG	PURGIN		PLIEGING	(U,T	TOTA	L VOLU	ME	
	WELL (feet):		'	WELL (feet): DEPTH	5.0		COND.	eNDED AT: عن DISSOLVED	<u>- \UA-I</u>		iED (gal	ons): <u>2 .</u>	20
TIME	TIME VOLUME VOLUME PURGE PURGED PURGED RATE (gallons) (gpm)			TO WATER (feet)	pH (standard units)	TEMP. (°C)	(circle units) µmhoe/cm or mS/cm	OXYGEN (circle units) ng/L or % saturation	TURBIC (NTU:	s) (d	COLOR lescribe)		OOR cribe)
11:13	1.UD	1.40	-20	3.05	-	27.9	0.71	0.10	10		lear	- Pe	401
11:15	.40	1.80	.20	3.05		27.9	0-11	P0.0	8.0				*1
11:17	40_	2.20	. 20	3.05	6.2	27.9	0-71	P0.09	9	> \			
					-				1				
			_									_	
	1												
WELL CA	PACITY (Gallon	s Per Foot):	0.75" = 0.02;	1" = 0.04;	<b>1.25</b> " = 0.0	6; 2" = 0.1	6; <b>3</b> " = 0.37;	; 4" = 0.65;	5" = 1.02;	6" = 1.4	17; 12	" = 5.88	
TUBING II	SIDE DÍA. CA	PACITY (Ga			i" = 0.0014;	1/4" = 0.002		0.004; <b>3/8</b> * = 0		/2" = 0.010		8" = 0.016 or (Specify	
- Tortairta			D - Dallot,	01 - 0100001		LING DA		ump, 11-11	madina i u	anp, t			<u>//</u>
	BY (PRINT) / A Davis/MDM S		: (	SAMPLER(S	S) SYGNATUR	E(S)		SAMPLING INITIATED A	n In		APLING	<u>  :z</u>	
PUMP OR	TUBING WELL (feet):	5.0		TUBING	CODE: HDPI	=		U-FILTERED: Y tion Equipment Ty	N		ER SIZE	:	μm
	CONTAMINATI		MP Y	MATERIAL	TUBING		aplaced)	DUPLICATE:	,	<u>N</u>			
SAM		ER SPECIFIC	CATION	SAMPL	E PRESERV/	TION (includ	ing wet ice)	INTEND		SAMPLI			
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVA		TOTAL VOL	FINAL	ANALYSIS A METHO		EQUIPME		FLOW R	
MW-6	1	AG	250 mL	H2SO4				TRPH	1	APP		300	
MW-6	1	AC	1000 AL	HZSO	ч			msins	0	499		300	
DELLAD													
REMARKS													
	050 L CODES:		r Glass; CG			ligh Density f	Polyethylene;	LDPE = Low De	nsity Polye	thylene;	PP =	Polypropy	/lene;
SAMPLIN	G EQUIPMENT		; T = Tellon; APP = After (T		taltic Pump;	B = Bailer			SP = Electri			np;	
NOTES: 1	. The above	do not con	RFPP = Rever		1.5			g Gravity Drain);	0 = Oth	er (Specify	y)		

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH:  $\pm$  0.2 units Temperature:  $\pm$  0.2 °C Specific Conductance:  $\pm$  5% Dissolved Oxygen: all readings  $\leq$  20% saturation (see Table FS 2200-2); optionally,  $\pm$  0.2 mg/L or  $\pm$  10% (whichever is greater) Turbidity: all readings  $\leq$  20 NTU; optionally  $\pm$  5 NTU or  $\pm$  10% (whichever is greater)

SITE	ombs Oil				SI		DE E Main	St., Immoka			
WELL NO				SAMPLE	: ID: MW-7		DE. Main		DATE: 6/1	0/2017	
WELL NO	. 19199-7			SAMPLE		AING DA	ТА		DATE: ON	19/2017	
WELL		TUBIN	G	WE	LL SCREEN			DEPTH	PU	IRGE PUMP T	YPE
DIAMETE	R (inches): 4	DIAME	TER (inches):	0.25 DEI	PTH: 1.5 fee	t to 11 feet	TOWA	TER (feet): 3 - 4 X WELL CAPAC	50 OF	BAILER: 28	
	it if applicable)	I WELL VO	·		_	_					
EQUIPME		URGE: 1 EQI	= ( 1 JIPMENT VOL	1 feet -	3.50	feet	) <u>x 0.65</u> Ty x	gallons/foot = TUBING LENGTH			
	it if applicable)				alions + (		ons/foot X	feet	,	gallons	= gallons
INITIAL P	UMP OR TUBIN	G	FINAL PUN		3	PURCIN	IG	PURGING		TOTAL VO	
DEPTH IN	WELL (feet):	5.5	DEPTH IN	WELL (feet):	<u>5.5</u>		DAT: 1.25	ENDED AT:	11:35	PURGED (	gallons): 2-00
TIME	VOLUME VOLUME PURGE PURGED PURGED RATE (gallons) (gpm)			DEPTH TO WATER (feet)	pH (standard units)	ndard (EMP. (Circle		OXYGEN (circle soits) mg/L or saturation	TURBIDI (NTUs)		
11:31	1.20	1.20	.20	3.79	6.4	27.0	0.88	0 25	17	clea	r petrol
11:33	.40	1.00	.20	3.79	6.4	27.6	0.85	0.26	19	<u> </u>	· · · · ·
11:35	40	2.00	.20	3.79	64	22.7	0.86	0.28	20		L., L., L.
								+			
			-					-			
	_		_					-		_	
	Î										
									1		
TUBING I	PACITY (Gallon NSIDE DIA. CA	s Per Foot): ( PACITY (Gal./	0.75" = 0.02; Ft.): <b>1/8"</b> = 0.0	1" = 0.04; 0006: 3/16'	<b>1.25"</b> = 0.00 ' = 0.0014;	5; 2" = 0.1 1/4" = 0.002	6; 3" = 0.37 6; 5/16" = (		5" = 1.02; ).006; 1/2	6" = 1.47; 2" = 0.010;	12" = 5.88 5/8" = 0.016
PURGING	EQUIPMENT C	ODES: 8	= Bailer;	BP = Bladder I	4.7		Submersible P	ump; <b>PP</b> = P	eristaltic Pur	np; <b>O</b> = C	ther (Specify)
	) BY (PRINT) / A			SAMPLEB(S)		LING D					
	Davis/MDM S			(D)	Q_	$\sum$		SAMPLING	T: 11235	SAMPLIN	IG AT: 1-30
PUMP OR	TUBING	5.5		TUBING		-		D-FILTERED: Y			SIZE:µm
	CONTAMINATIO	-	^	MATERIAL C	TUBING		placed)	tion Equipment Ty DUPLICATE:		<u>N</u>	
<u> </u>	PLE CONTAINE					TION (includ		INTEND		SAMPLING	SAMPLE PUMP
SAMPLE	#	MATERIAL	VOLUME	PRESERVAT	IVE 1	OTAL VOL	FINAL		ND/OR E		FLOW RATE (mL per minute)
ID CODE MW-7	CONTAINERS 1	CODE AG	250 mL	USED H2SO4	ADDĘ	D IN FIELD (	mL) pH	TRP		APP	
											000
DELAG											
REMARKS	_										
	075 L CODES:	AG = Amber	Glace: CC -	Clear Glass;		linh Donaite f	olvethylene;	LDPE = Low De	anaitu Paku-ti	hulana: DD	= Polypropylene;
		S = Silicone;	- 2013	O = Other (S		iigh Density f	oryetnylene;	LUFE = LOW DO	aisity #01980	nyiene, PP	= roiypropyiene;
SAMPLIN	G EQUIPMENT	CODES: A	APP = After (Th FPP = Revers	rough) Perista e Flow Perista	Itic Pump; Itic Pump;	B = Bailer; SM = Straw		dder Pump; E g Gravity Drain);		: Submersible I er (Specify)	Pump;
NOTES: 1	. The above	do not cons	titute all of t	he informat	ion require	d by Chapt	er 62-160, F.	A.C.			

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE_FS 2212, SECTION 3)

pH:  $\pm$  0.2 units Temperature:  $\pm$  0.2 °C Specific Conductance:  $\pm$  5% Dissolved Oxygen: all readings  $\leq$  20% saturation (see Table FS 2200-2); optionally,  $\pm$  0.2 mg/L or  $\pm$  10% (whichever is greater) Turbidity: all readings  $\leq$  20 NTU; optionally  $\pm$  5 NTU or  $\pm$  10% (whichever is greater)

SITE								SITE					1				
	ombs Oil								525 E	E. Main S	<u>St., Immokal</u>						
WELL NO:	: MW-8				SA	MPLE	1D: MW-					DATE:	6/19/	2017			
								GING D		7							
	R (inches): 4			i 'ER (inches):	0.25			NINTERVAL		STATIC D	EPTH R (feet): 3. \	, I	PURG OR BA	ie Pump 1 Ailer: Pt	YPE		
WELL VO	LUME PURGE:	1 W	ELL VOL	UME = (TO	TAL WEL	L DEP	TH - ST	ATIC DEPTI	TOW	ATER) X	WELL CAPACI	TY I					
only fill ou	it if applicable)			- / 1	1 feet	_	3.14	Э,	ot) Y	0.65	gallons/foot =	1	210	gallons			
		URGE	E: 1 EQU							<u>Х</u> ТЦ	JBING LENGTH)						
(only fill ou	it if applicable)					ga	lions + (	g	allons/fe	oot X	(eet)	+		gallons	=	ga	llons
	JMP OR TUBIN WELL (feet):	GĘ	5.0	FINAL PU DEPTH IN			5.0	PURG	GING	T: (1:40		11:5		TOTAL VC PURGED (	LUM	s) 2.	20
			PURGE RATE (gpm)	DEF Ti WAT	o Fea	pH (standaro units)	TEMP. (°C)	(ci µı Q	COND. rcle units) mbes/cm r_mS/cm	DISSOLVED OXYGEN (nircle onits) mg/L or % saturation		BIDITY TUs)	COLC (descri			OR cribe)	
11:47	1.40	<u>  1.0</u>	0	.20	3.		6.0	28.0		50	0.40	11 0	1.1	Clea	r	20	in
11:49	.40		08.	.20	3.		0.0	23.0			0.41	4 <u> </u>	$\sim$	\~	s.,	~ ~	- 1
11:51	.40	2	, 20	.20	<u> </u>	<u>41</u>	60	79.D		90	0.42	14	4.2	<u>)</u>	× -	5 m	* 1
		<u> </u>										<u> </u>		_			
		<u> </u>			_				_			<u> </u>		_			
					_			_									
	-							_									
							-	-	_								
		-		1					-								
		-			-									-			
	PACITY (Gallon											5" = 1.0		" = 1.47;		= 5.88	
	ISIDE DIA. CA			<u>1.):   1/8" = 0</u> = Bailer;	.0006; BP = Bla			$\frac{1/4" = 0.0}{ESP = Elect}$		5/16" = 0.1 mersible Pur				0.010; Q = 0		= 0.016 Specify	
								PLING [									
	BY (PRINT) / A Davis/MDM S				SAMPL	ERIST	SIGNATU	35(3):			SAMPLING INITIATED AT	r: 1Ö	51	SAMPLI	NG AT:	1:5	2
PUMP OR		5.	0		TUBING						FILTERED: Y	N		FILTER	SIZE:		μm
		-				IAL CO	DE: HDF		(		on Equipment Ty						
							TUBING	Y <u>N</u> /ATION (incl	(replac	•	DUPLICATE:		Y	<u>N</u> MPLING	0.0	MPLE F	21.18.475
SAMPLE ID CODE	# CONTAINERS	MAT		VOLUME	PRESE		VE		L	FiNAL pH	ANALYSIS A METHO	ND/OR	EQU		F	LOW R	ATE
MW-8	3		CG	40 mL					- (116)		BTEX/M	ГВЕ		APP	2	500	
													1				
ORP = (																	
	L CODES:	AG =	= Amber (	Blass; CG	= Clear G	lass;	HDPE =	High Densil	y Polye	athylene;	LDPE = Low De	nsity Po	oiyethyle	ene; Pl	P	lypropy	lene;
		S = 5	Silicone;	T = Teflon;	0 = 0	ther (S	pecify)			• ·				22			
	G EQUIPMENT	COD	R	PP = After (T FPP = Rever	se Flow P	^o eristal	tic Pump;		aw Met		Gravity Drain);			ibmersible Specify)	Pump	); 	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. <u>STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)</u> **pH:**  $\pm$  0.2 units **Temperature:**  $\pm$  0.2 °C **Specific Conductance:**  $\pm$  5% **Dissolved Oxygen:** all readings  $\leq$  20% saturation (see Table FS 2200-2); optionally,  $\pm$  0.2 mg/L or  $\pm$  10% (whichever is greater) **Turbidity:** all readings  $\leq$  20 NTU; optionally  $\pm$  5 NTU or  $\pm$  10% (whichever is greater)

SITE	ombs Oil					SITE	25 E Mair	n St., Immoka	alee Fl				
	MW-28			SAM	PLE ID: MW-				1	19/2017			
							ТА		DATE	13/2017			
WELL		TUBIN	G	1	VELL SCREEN				PI	JRGE PUMP T			
	R (inches): 2		TEA (inches):	0.25 0	EPTH: 2 feet	to 12 feet		TER (feet): 5			-		
	t if applicable)	1 WELL VU	-						-				
EQUIPME		URGE: 1 EO		2 feet -	<u>З.ч</u>		<u>) x 0.16</u> ITY X	gallons/foot = TUBING LENGT	- しろし H) + FLOW (	gallons FLL VOLUME			
	t if applicable)			=	gallons + (		ons/foot X		et) +	gallons		na	illons
	JMP OR TUBIN	^{IG} 5.0		AP OR TUB	110	DUDON	IG	PURGING			LUME	:	
DEPTH IN	WELL (feet):		DEPTH IN	WELL (feet			ED AT: 115	DISSOLVED	12:07	PURGED (	gallon I	s): 📿 -	60
TIME	(galions) (galions) (gpm)			DEPTH TO WATER (feet)	PH (ctopdard	TEMP. (°C)	COND (circle units) µmhos/cm or mS/cm	) OXYGEN	DXYGEN inde units) mg/L or (NTUs)		DR be)	ODOR (describe)	
12:03	1.40	1.40	-20	3.61 6.3 27.9 0.51 0.30						<u></u> <u></u>	s	0	M.
12:05	.40	1.80	.20	3.6		27.9	0,51	0.32	19	C ²	4	1-	~1
12:07	.40	2.20	.20	3.6	1 6.3	27.9	0.51	0.35	20		۰		8-1
								_	-				
												~	
			_										
			_	_	_			_	_				
WELL CAI	PACITY (Gallon	s Per Foot):	<b>0.75</b> " = 0.02;	1" = 0.04	; 1.25" = 0.	06; <b>2" = 0</b> .1	6; 3" = 0.3	7; 4" = 0.65;	5" = 1.02;	<b>6</b> " = 1.47;	12" :	= 5.88	
TUBING IN	SIDE DIA. CA	PACITY (Gal.	/Ft.): 1/8" = 0	0006; 3/	<b>16</b> " = 0.0014;	1/4" = 0.003		0.004; <b>3/8*</b> =		2" = 0.010;		= 0.016	
PURGING	EQUIPMENT	JUDES: E	s = baller;	BP = Bladd		PLING D		rump; rr=	Feristanic Fu	mp; O = C	vner (	Specify	}
	BY (PRINT) 7 A avis/MDM S			SAMPLER	(6) SIGNATUR			SAMPLING		SAMPLI		_	
PUMP OR		services		TUBING	>0	$\rightarrow$	( E)E	INITIATED	AT: 12:07	FILTER S			
	WELL (feet):	5.5			CODE: HDF	Έ		ation Equipment		FILTERS		!	TUU
	CONTAMINATIO				TUBING		eplaced)	DUPLICAT	≣: Y	<u>N</u>			
SAMI SAMPLE	PLE CONTAINE	ER SPECIFIC				ATION (includ	ling wet ice) FINA			SAMPLING EQUIPMENT		MPLE P .OW R/	
ID CODE	CONTAINERS	CODE	VOLUME	PRESERV	D ADD	ED IN FIELD (		METH	IOD	CODE		. per mi	
MW-28		AG	250 mL	H2SC	14			TRI	'н 	APP	3	00	
								_					
-													
REMARKS													
(	082		<b>a</b> . <b>- - -</b>	a									
MATERIAI	L CODES:	AG = Amber S = Silicone;		Clear Glas O = Othe	s; HDPE = r (Specify)	High Density	Polyethylene;	LDPE = Low I	Jensity Polye	thylene; PF	e Po	lypropy	lene;
SAMPLING	G EQUIPMENT		APP = After (T RFPP = Reven			B = Bailer SM = Straw		adder Pump; ing Gravity Drain)		c Submersible er (Specify)	Pump	*	
NOTES, 4	The shove		Ala all add		 								

IOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. <u>STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)</u> **pH:**  $\pm$  0.2 units **Temperature:**  $\pm$  0.2 °C **Specific Conductance:**  $\pm$  5% **Dissolved Oxygen:** all readings  $\leq$  20% saturation (see Table FS 2200-2); optionally,  $\pm$  0.2 mg/L or  $\pm$  10% (whichever is greater) **Turbidity:** all readings  $\leq$  20 NTU; optionally  $\pm$  5 NTU or  $\pm$  10% (whichever is greater)

# FT 1000 General Field Testing and Measurement

							BRATION R		
		MAKE/MO	DEL#)	<u>YSI 550/</u>	<u>'Lamott</u>	e 2020/I	Hanna INS	STRUMENT	# 2/2/2
PARAM									
					🗌 s.4	LINITY	🔀 pH	ORP	
🖂 TU	RBIDITY	Ľ	RESIDUAL	CI		C	OTH	ER	
STANDA values: and	RDS: [ d the date	Specify the t the standard	ype(s) of star Is were prepa	ndards use ared or pu	ed for cai rchased]	ibration ti	he origin of the .	standards, the	slandard
Stand	ard A_ <u>tu</u>	rbidity-10.0	exp : c	conductiv	ity-1.00	0 exp	<u>рН-7.00 ехр</u>	DO-100	<u>)%-DI water</u>
Stand	ard B <u>tur</u>	bidity-1.0 e.	<u>xo. : cc</u>	<u>nductivit</u>	<u>y-500 e</u> ,	х <u>р.</u> [	0H-4.00 exp		
Stand									
DATE (yy'mm/dd)	TIME (bramin)	(A, B, C)	STD WALUE (10.0)1.0	INSTRU RESPI		% DEV	CALIBRATED (YES. NO)	TYPE (INIT, CONT)	SAMPLER
17/10/19	10:40	ATB	turbicity	10.1	0	0	N		KP
11/10/19	10.42	AB	1,000/500	100	0	0	N		Ó
1/1/19	(0:44	(A)B	(7.00/4.00 pH	7.	0	5	$\sim$		Q
17/10/19	(0.4u	A	100% DO	10	0%	0	ų		Ì
		(A/B (	10.0/0.0						
17/6/19	12:10	~	LUNALINY	10.	0	0	N		$\langle p \rangle$
17/6/19	12:12	(A)B	1,000/500 Conduct.	99	٩	l	N		$\langle \mathcal{O} \rangle$
17/12/19	12:14	AB	7.00/2.00 pH	7.7	2	Õ	N		$\bigcirc$
17/10/19	(2:16	A	100% DO	98	0]	2	N		$\bigcirc$
		80						· · · · · · · · · · · · · · · · · · ·	
						12		-	
							in.		
									1
	1	-	1						1
				-					

Location 625 E. Main St., Jan Ocal aDate (4)19/17 Project / Client Gmos O. 1 20815 FA C#: 118839176

7:30-Daniel Davis les mon lakeland office in MDA'S Nissan Nicop on sark host . 7100 miles. 1025 Arrived on site Took we Round: MW-5:3.10 MW-6:2.90 MW-7:3.50 MW-91:310 MW-20:347 10:40 Checked calibration dimeters see cel. 100. 10 50 - Propa purging most. 11:02- Sampled MW.5. 11:00- Began purging MW-6. -11:21- Seimpled prix 6. 11:25- Broan purging MW-T. 11:32-Sampled MW-7. 11:40 - Began purging Mus-8. 11:52- 50 mpled mw-8. 15-50 - Began purging new 28. 12:08 - 50 mpled MW-28. 12'10- CLecked calibration & meters see callog. 12:30 - All Samples packed inice. Packed up & left sik en coute to MDM Laxeland office. >100 miles. Rete in the Rein.

91

# Site 28 – Davis Oil Company

# (also known as Sunoco Gas Station, Gator Food Store, and Oleum Corp)

# 01/24/2018 16:02 Applied Science & Engineering

(FAX)813 288 1550

P.002/002

ALLE BURGER	Departn	nent of	DEF Form: <u>67-761.900(1)</u> Form Title: <u>Discharge Report Foem</u>
	Environment	al Protection	Effective Date: January 2017 Incorporated in Rule 62-761.605, F.A.C.
	2600 Bielr Stone Road + Talla	hassee, Florida 32399-2400	HILL FOR THE INTER DE TALLES, FAL.
A A A A A A A A A A A A A A A A A A A	DISCHARGE R	EPORT FORM	
Complete all applicable blanks, and subr			solls, surfece water, or groundwater to the County
Facility ID Number (If Registered): 11/85	i18121 Date of Form Con	or mail. 1/24/12 notetion: statute	Oate of Discovery: 12/12/2017
Facility Name: Gator Foods Inc		County:	
Facility (Property) Owner: Cecil R. Howe		Telephon	e Number: 863-673-8330
Owner Mailing Address: PO Box 610, Im			
	dress): 730 E Main Street, Immokalee, FL	······································	Lat/Long:
Date of receipt of any test or analytical r	esults confirming a discharge: 12/12/2018	Estimated	I number of gallons discharged: Unknown
Discharge affected: (Chack sil that apply 501 Drinking water well(s)	Groundwater S	oll water (water body name) https://water.body.name)	
Evidence of discharge: (Check all that ap Visual observation of sheen Visual observation of free product	Results or receipt of results of ana		]Stained soils ]Other (expiain in comments)
Method of discovery and confirmation ( Usual observation Groundwater analytical results	of discharge: (Chack all that apply, see rule i M Closure/Closure sampling assass m Soli analytical results	anguage explanation on instru-	cions for this form) ] Surface water analytical results ] Other (specify)
Type of regulated substance discharged			-
Gasoline Diesel	Jet fuel Used/waste oli		Mineral acids (ASTs)
Heating oil	New motor/lube oll		Biofuel blends
Kerasene Aviation gas	Pesticide		Unknown
	Grade 5 & 6 residual olis 6 name or Chemical Abstract Service (CAS) #	<b>ا</b> لـــــ	Other (specify)
Discharge originated from at (Check all I		**************************************	
Tark	Other secondary containment		Reilroad tankcar
Piping Spill bucket	Filling or pipe connection Valve		Barge, tanker ship or other vessel Pipeline
Olspensur	Tank truck	<u> </u>	] Drum
Piping sump	Vehicle or customer vehicle		Unknown
Dispenser sump	Alreraft	L	] Other (specity)
Cause of the discharge: (Check all that a	pply) faterial fallure (crack, split, etc.)	Collision	Weather
	taterial incompatibility	Vehicie accident	Human error
	nproper instellation	Fire/explosion	Unknown
Actions taken in response to the dischar		Vandaliam	Other (specify) Damaged Boots
A source removel was completed aroun	id the diesel dispenser island with alevated	OVA readings during closure as	isessment.
Comments:			
Agencies potified (as applicable):			
paraman and and and and and and and and and a	Program Co:Her Distri	ct OfficeS	tate Watch Office National Response Cente 800-320-0519 800-424-8802
To the best of my knowledge and belief	i, all information submitted on this form is		0
Cecil Howell, property owner		(leil Hou	vell
Printed Name of Owner, Operator or Au	thorized Representative	Signature of Owner, Oper	ator or Authorized Representative



# **Incident Notification Form**

DEP Form # <u>62-761.900(6)</u>

Form Title Incident Notification Form

Effective Date: July 13, 1998

# PLEASE PRINT OR TYPE

Instructions are on the reverse side. Please complete all applicable blanks

1. Facility ID Number (if registered): 118518121	2. Date of form completion: 7/21/17
3. General information	
Facility name: Gator Foods, Inc	
Facility Owner or Operator: Gator Foods, Inc.	
Contact Person: Brian Davis Telepl	tone number: (239)5654477 County: Collier
Facility mailing address: 726 E Main Street, Immokalee	
Location of incident (facility street address): 726 E Main S	treet. Immokalee. FL 34142
Latitude and Longitude of incident (If known.)	
4. Date of Discovery of incident: 8/23/16	month/day/year
5. Monitoring method that indicates a possible release or an	
[ ] Liquid detector (automatic or manual) [ ] Groundwa	
[ ] Vapor detector (automatic or manual) [ ] Monitorin	
[] Tightness test   Internal in	
[] Pressure test [] Odors in t	
	tank gauging
Visual observation	
	Other
6. Type of regulated substance stored in the storage system:	(check one)
✓ Diesel	ste oil   New/lube oil
Gasoline	
Heating oil     Jet fuel	Other
	cides, ammonia, chlorine, and their derivatives, and mineral acids.
(write in name or Chemical Abstract Service (CAS ) number	
7. Incident involves or originated from a: (check all that apply	()
	/ Dispensing equipment           Pipe           Overfill protection device           Secondary containment system         ] Other       // Dispenser Liners         secondary containment       [   Loss of >500 gallons within secondary containment         [ ] Theft         Corrosion         [ ] Installation tailure       [ / Other Rotting Boots
0 Actions taken in response to the insident. Deple compart	to accur in August 2017
9. Actions taken in response to the incident: <u>Replacement</u>	o occur in August 2017
· · · · · · · · · · · · · · · · · · ·	
10. Comments:	
11. Agencies notified (as applicable):	
] Fire Department.   ✓ Local Program	
12. To the best of my knowledge and belief, all information s	
Printed Name of Ovener, Operator or Authorized Representative	Signature of Owner, Operator or Authorized Representative.



# FLORIDA DEPARTMENT OF Environmental Protection

Bob Martinez Center 2600 Blair Stone Road Tallahassee, FL 32399-2400 Ron DeSantis Governor

Jeanette Nuñez Lt. Governor

Shawn Hamilton Secretary

November 21, 2022

Sent via email to: davisoilco@gmail.com

Mr. Donnie Davis Davis Oil Company Inc 726 E Main Street Immokalee, FL 34142

Subject: Site Rehabilitation Completion Order Davis Oil Company Inc 726 E Main Street Immokalee, Collier County FDEP Facility ID# 118518121 Discharge Dates: March 17, 1994 (PLRIP), January 29, 2018 (Non-program) Discharge Score: 11

Dear Mr. Davis:

The Petroleum Restoration Program (PRP) has reviewed the Source Removal Report (SRR) and No Further Action Proposal (NFAP) dated and received August 29, 2022, the Supplemental Site Assessment Report (SSAR) dated and received March 10, 2022, and the Addendum to the SSAR dated and received May 2, 2022, for the petroleum product discharges referenced above. All the documents submitted to date are adequate to meet the site assessment requirements of Rule 62-780.600, Florida Administrative Code (F.A.C.). In addition, documentation submitted with the SSARs/SRR/NFAP confirms that criteria set forth in Subsection 62-780.680(1), F.A.C., have been met. Please refer to the attached maps of the source property and analytical summary tables, Exhibits A and B respectively and hereby incorporated by reference. The SSARs/SRR/NFAP are hereby incorporated by reference in this Site Rehabilitation Completion Order (Order). Therefore, you are released from any further obligation to conduct site rehabilitation at the facility for petroleum product contamination associated with the discharges referenced above, except as set forth below.

- (1) In the event concentrations of petroleum products' contaminants of concern increase above the levels approved in this Order, or if a subsequent discharge of petroleum or petroleum product occurs at the facility, the Florida Department of Environmental Protection (Department) may require site rehabilitation to reduce concentrations of petroleum products' contaminants of concern to the levels approved in the SSARs/SRR/NFAP or otherwise allowed by Chapter 62-780, F.A.C.
- (2) Additionally, you are required to properly plug and abandon all monitoring wells, injection wells, extraction wells, and sparge wells within 60 days of receipt of this Order unless these wells are otherwise required for compliance with a local ordinance or another cleanup. The wells must be

Mr. Donnie Davis FDEP Facility ID# 118518121 Page 2 November 21, 2022

plugged and abandoned in accordance with the requirements of Subsection 62-532.500(5), F.A.C. A Well Plugging Report shall be submitted within 30 days of well plugging. Other State, county or city requirements for well abandonment may also apply.

### **NOTICE OF RIGHTS**

This action is final and effective on the date filed with the Clerk of the Department unless a petition for an administrative hearing is timely filed under Sections 120.569 and 120.57, F.S., before the deadline for filing a petition. On the filing of a timely and sufficient petition, this action will not be final and effective until a subsequent order of the Department. Because the administrative hearing process is designed to formulate final agency action, the subsequent order may modify or take a different position than this action.

### Petition for Administrative Hearing

A person whose substantial interests are affected by the Department's action may petition for an administrative proceeding (hearing) under Sections 120.569 and 120.57, F.S. Pursuant to Rules 28-106.201 and 28-106.301, F.A.C., a petition for an administrative hearing must contain the following information:

- (a) The name and address of each agency affected and each agency's file or identification number, if known;
- (b) The name, address, any e-mail address, any facsimile number, and telephone number of the petitioner, if the petitioner is not represented by an attorney or a qualified representative; the name, address, and telephone number of the petitioner's representative, if any, which shall be the address for service purposes during the course of the proceeding; and an explanation of how the petitioner's substantial interests will be affected by the agency determination;
- (c) A statement of when and how the petitioner received notice of the agency decision;
- (d) A statement of all disputed issues of material fact. If there are none, the petition must so indicate;
- (e) A concise statement of the ultimate facts alleged, including the specific facts that the petitioner contends warrant reversal or modification of the agency's proposed action;
- (f) A statement of the specific rules or statutes that the petitioner contends require reversal or modification of the agency's proposed action, including an explanation of how the alleged facts relate to the specific rules or statutes; and
- (g) A statement of the relief sought by the petitioner, stating precisely the action that the petitioner wishes the agency to take with respect to the agency's proposed action.

The petition must be filed (received by the Clerk) in the Office of General Counsel of the Department at 3900 Commonwealth Boulevard, Mail Station 35, Tallahassee, Florida 32399-3000, or via electronic correspondence at Agency_Clerk@FloridaDEP.gov. Also, a copy of the petition shall be mailed to the addressee at the address indicated above at the time of filing.

### Time Period for Filing a Petition

In accordance with Rule 62-110.106(3), F.A.C., petitions for an administrative hearing by the addressee must be filed within 21 days of receipt of this written notice. Petitions filed by any persons other than the addressee must be filed within 21 days of publication of the notice or within 21 days of receipt of the written notice, whichever occurs first. You cannot justifiably rely on the finality of this decision unless notice of this decision and the right of substantially affected persons to challenge this decision has been

Mr. Donnie Davis FDEP Facility ID# 118518121 Page 3 November 21, 2022

duly published or otherwise provided to all persons substantially affected by the decision. While you are not required to publish notice of this action, you may elect to do so pursuant Rule 62-110.106(10)(a).

The failure to file a petition within the appropriate time period shall constitute a waiver of that person's right to request an administrative determination (hearing) under Sections 120.569 and 120.57, F.S., or to intervene in this proceeding and participate as a party to it. Any subsequent intervention (in a proceeding initiated by another party) will be only at the discretion of the presiding officer upon the filing of a motion in compliance with Rule 28-106.205, F.A.C. If you do not publish notice of this action, this waiver may not apply to persons who have not received a clear point of entry.

### Extension of Time

Under Rule 62-110.106(4), F.A.C., a person whose substantial interests are affected by the Department's action may also request an extension of time to file a petition for an administrative hearing. The Department may, for good cause shown, grant the request for an extension of time. Requests for extension of time must be filed with the Office of General Counsel of the Department at 3900 Commonwealth Boulevard, Mail Station 35, Tallahassee, Florida 32399-3000, or via electronic correspondence at Agency_Clerk@FloridaDEP.gov, before the deadline for filing a petition for an administrative hearing. A timely request for extension of time shall toll the running of the time period for filing a petition until the request is acted upon.

### Mediation

Mediation is not available in this proceeding.

### Judicial Review

Once this decision becomes final, any party to this action has the right to seek judicial review pursuant to Section 120.68, F.S., by filing a Notice of Appeal pursuant to Florida Rules of Appellate Procedure 9.110 and 9.190 with the Clerk of the Department in the Office of General Counsel (Station #35, 3900 Commonwealth Boulevard, Tallahassee, Florida 32399-3000) and by filing a copy of the Notice of Appeal accompanied by the applicable filing fees with the appropriate district court of appeal. The notice must be filed within 30 days from the date this action is filed with the Clerk of the Department.

### Questions

Any questions regarding the PRP's review of the SSARs/SRR/NFAP should be directed to Jessica Tromer at 813-684-4400 ext. 4836. Questions regarding legal issues should be referred to the Department's Office of General Counsel at 850-245-2242. Contact with any of the above does not constitute a petition for an administrative hearing or a request for an extension of time to file a petition for an administrative hearing.

The FDEP Facility Number for this facility is 118518121. Please use this identification on all future correspondence with the Department.

Mr. Donnie Davis FDEP Facility ID# 118518121 Page 4 November 21, 2022

# **EXECUTION AND CLERKING**

# Executed in Tallahassee, Florida. STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

Natasha Lampkin Program Administrator Petroleum Restoration Program

### Attachment(s):

A: map(s) of the source property; B: updated analytical summary tables

### **CERTIFICATE OF SERVICE**

The undersigned duly designated deputy clerk hereby certifies that this document and all attachments were sent on the filing date below to the following listed persons:

ec: Gary Maier, FDEP South District Office – <u>gary.maier@floridadep.gov</u> Jessica Tromer, FDEP–PRP (PRS5) – <u>jtromer@northstar.com</u> Alfie Nazario, FDEP-PRP (PRS5) – <u>anazario@northstar.com</u> Cayla Yerg, FDEP-PRP (PRS5) – <u>cyerg@northstar.com</u> John McKeague, Universal Solutions, Inc., <u>jmckeague@usienvironmental.com</u> South Florida Water Management District – <u>wells@sfwmd.gov</u> Petroleum Restoration Program – <u>prp.orders@floridadep.gov</u> File

### FILING AND ACKNOWLEDGMENT

FILED, on this date, pursuant to Section 120.52, F. S., with the designated Department Clerk, receipt of which is hereby acknowledged.

Clerk

Date



# FLORIDA DEPARTMENT OF Environmental Protection

Ron DeSantis Governor

Jeanette Nuñez Lt. Governor

Shawn Hamilton Secretary

Bob Martinez Center 2600 Blair Stone Road Tallahassee, FL 32399-2400

# MEMORANDUM

- FROM:Natasha Lampkin, Program Administrator, Petroleum Restoration<br/>ProgramNatasha LampkinDigitally signed by Natasha Lampkin<br/>Date: 2022.11.18 19:59:55 -05:00'SUBJECT:Delegations of Authority
- DATE: 11/18/2022

In accordance with DEP Directive 100, the following referenced delegation(s) are hereby delegated to the delegate(s) listed.

Delegation Reference	Delegate(s)
DEL-16 Permitting Authority:	• Susan Fields, Environmental
For their respective divisions, take agency	Administrator, Petroleum
action on all orders, certifications, agreements,	Restoration Program
permits, general permits, generic permits,	
exemptions, and exception applications,	
including modifications and extensions.	

Limitations to the delegation(s): Limited to the following Approvals for Petroleum Cleanup Sites: Site Rehabilitation Completion Orders, Conditional Site Rehabilitation Completion Orders, Low Scored Site Initiative No Further Action Orders, Underground Injection Control Approval Orders, Remedial Action Plan Approval Orders, Interim Source Removal Proposal Approval Order and Monitoring Plan Approvals only and does not include any other agreements, orders, certifications, permits, exemptions, exceptions, modifications or extensions.

The exercise of these delegations shall be consistent with all applicable rules, statutes, administrative directives, policies and procedures. These delegations should be exercised with a high degree of judgment and caution. If there is any doubt whether exercising this delegated authority is inconsistent with any of the above limitations, the person whom the authority is delegated shall not exercise the authority without first consulting Natasha Lampkin, Program Administrator, Petroleum Restoration Program.

This delegation of authority revokes, replaces, and supersedes all previous delegations within the Petroleum Restoration Program.

This delegation is temporary and will be in effect from November 21, 2022 through November 22, 2022.

Exhibit A

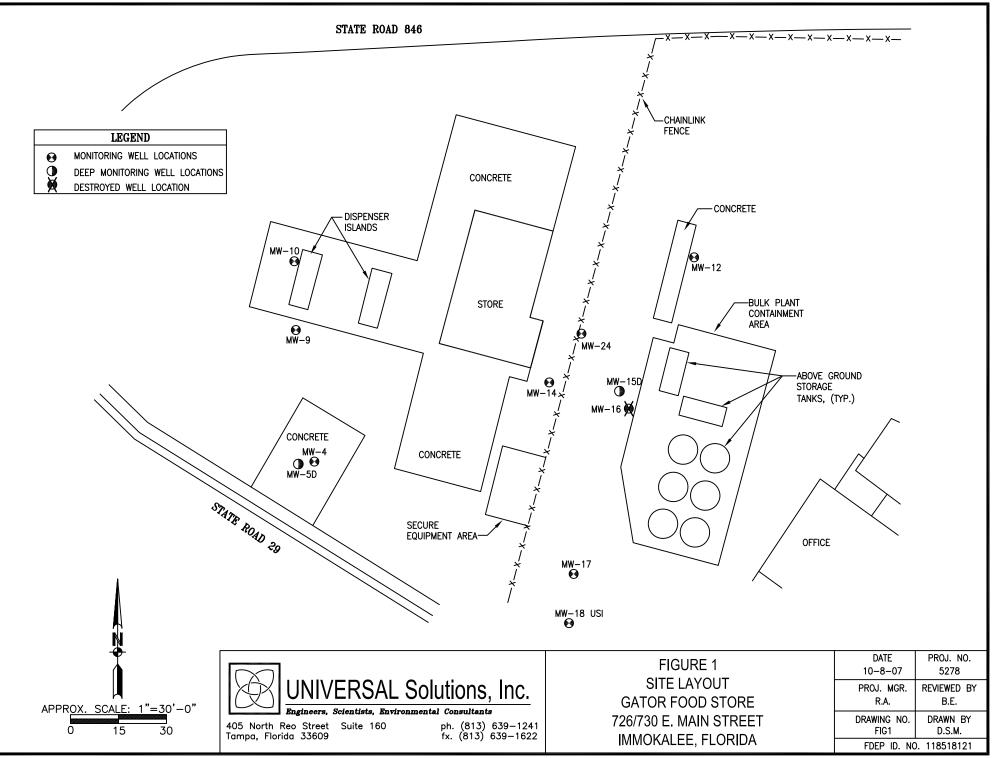
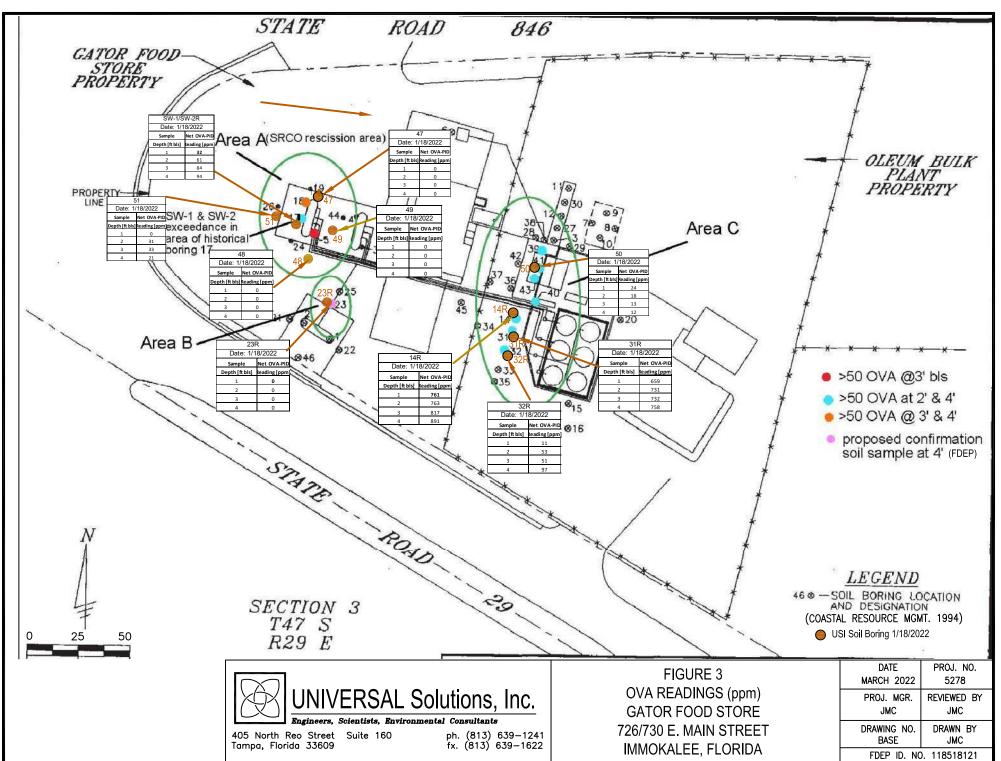
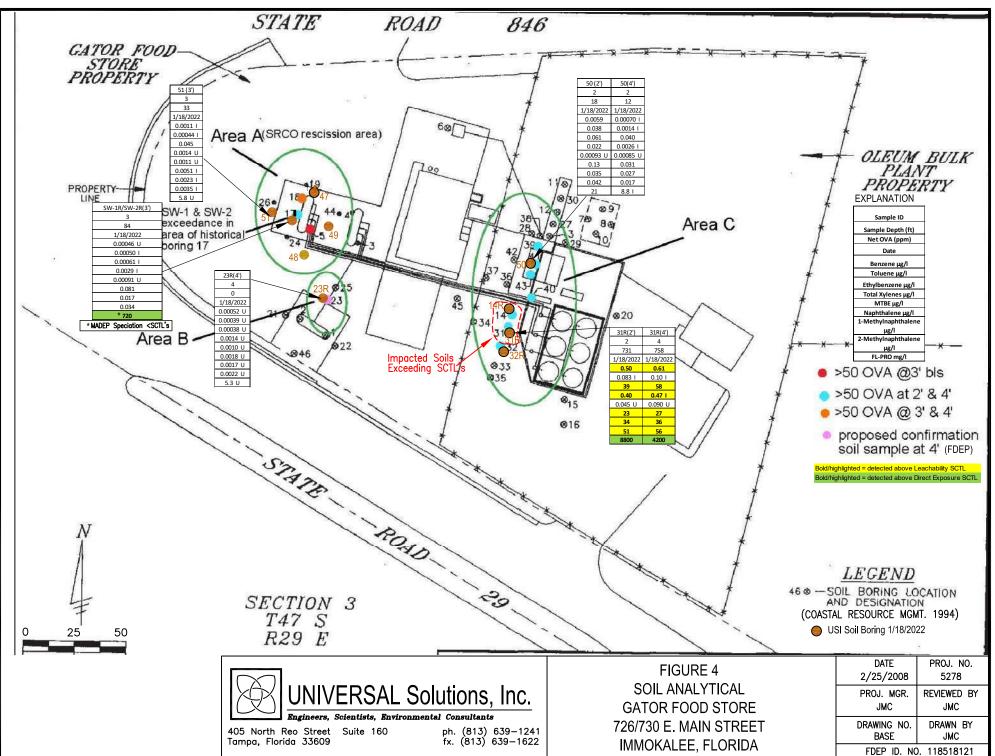
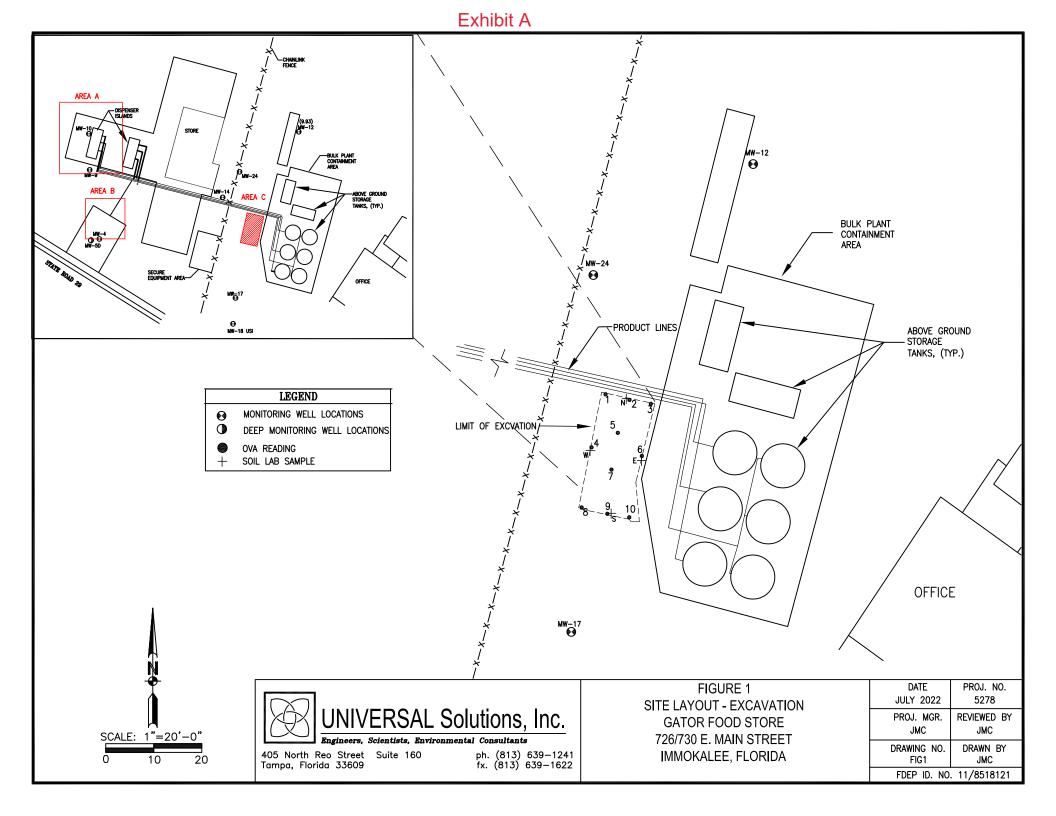






Exhibit A



# Exhibit A





# Exhibit B

### TABLE 3: SOIL ANALYTICAL RESULTS

### JT Facility Name: Gator Foods Davis Oil Company INC Facility Address: 726/730 E. Main St., Immokalee, FL

# Facility ID No. 118518121 Universal Project No. 5278

		Sample					Ethylbenzen	Total		Naphthale	1- Methylnaph	2- Methylnaphtha	
	Location	Depth (ft)	Net OVA (ppm)	Date	Benzene	Toluene	e	Xylenes	MTBE	ne	thalene	lene	FL-PRO
	Leachability				0.007	0.5	0.6	0.2	0.09	1.2	3.1	8.5	340
	Direct Exp. Res.				1.2	7500	1500	130	4400	55	200	210	460
	∕ SS-1	2	0	11/14/2017	0.00038 U	0.00028 U	0.00022 U	0.00032 U	0.00068 U	0.0026 U	0.0019 U	0.0024 U	7.7 U
	SS-21	3	1283	11/14/2017	0.020 U	0.014 U	0.42	0.064 I	0.035 U	13	27	36	2700
Area A	SS-3	2	0	11/14/2017	0.00050 U	0.00036 U	0.00029 U	0.00014 U	0.00088 U	0.010 U	0.082 U	0.010 U	120
	SW-1 ²	4	366	11/14/2017	0.0020 U	0.016 U	0.79	0.065 I	0.038 U	0.014 I	0.027 I	0.030 I	5100
	∑ SW-2 ²	4	SB-BOTTOM	11/14/2017	0.021 U	0.015 U	0.012 U	0.017 U	0.037 U	11	25	29	5100
Area B -	— 23R(4')	4	0	1/18/2022	0.00052 U	0.00039 U	0.00038 U	0.0014 U	0.0010 U	0.0018 U	0.0017 U	0.0022 U	5.3 U
	∕31R(2') <b>**</b>	2	731	1/18/2022	0.50	0.083	39	0.40	0.045 U	23	34	51	8800
	31R(4')**	4	758	1/18/2022	0.61	0.10	58	0.47 I	0.090 U	27	36	56	4200
Area C <	50 (2')	2	18	1/18/2022	0.0059	0.038	0.061	0.022	0.00093 U	0.13	0.035	0.042	21
	50(4')	2	12	1/18/2022	0.00070 I	0.0014 I	0.040	0.0026	0.00085 U	0.031	0.027	0.017	8.8 I
Area A 🤝	51 (3')	3	33	1/18/2022	0.0011 I	0.00044 1	0.045	0.0014 U	0.0011 U	0.0051 I	0.0023 I	0.0035 I	5.8 U
	SW-1R/SW-2R(3')	3	84	1/18/2022	0.00046 U	0.00050 1	0.00061 I	0.0029 1	0.00091 U	0.081	0.017	0.034	720*

NOTES:

Total BTEX = sum of Benzene, Toluene, Ethylbenzene, Total Xylenes,

I = reported value in between laboratory limit of detection (LOD) and laboratory limit of quantitation (LOQ)

U= indicates that a specific compound was analyzed for but not detected. The reported value shall be the laboratory limit of detection.

NS = not sampled for particular consituent(s).

all constituents shown in mg/kg unless otherwise noted

Soil Samples SS-1 through SW-2 Collected at Dispenser Closure Assessment (2017-See Appendix A)

Concentration exceeds SCTLs for Leachability Concentration exceeds SCTLs for Direct Exposure Bold/highlighted = detected above Leachability SCTL Bold/highlighted = detected above Direct Exposure SCTL

* MADEP Speciation <SCTLs

****** Soil Excavated

1 Confirmation sample collected @ 51(3')

2 Confirmation sample collected @ SW-1R/SW-2R(3')

### TABLE 4: SOIL ANALYTICAL RESULTS

JT

Facility Name: Gater Feeds Davis Oil Company INC Facility Address: 726/730 E. Main St., Immokalee, FL

Facility ID No. 118518121

all constituents shown in mg/kg unless otherwise noted

					Acenapht	Acenanht		Benz(a)Anth	Benzo(a)n	Benzo(b)fluor	Benzo(g h i)n	Benzo(k)fluo		Dibenz(a, b)Anthrac	Fluoranth		Indeno(1,2,3-		
	Location	Sample Depth (ft)	Net OVA (ppm)		hene	hylene	Anthracene	racene	yrene	anthene	erylene	ranthene	Chrysene	ene	ene	Fluorene	cd)pyrene	Phenanthrene	Pyrene
	Leachability				2.1	27	2500	0.8	8	2.4	32000	24	77	0.7	1200	160	6.6	250	880
	Direct Exp. Res.				2400	1800	21000	NA	0.1	NA	2500	NA	NA	NA	3200	2600	NA	2200	2400
Ĩ	SS-1	2	0	11/14/2017	0.022 U	0.0025 U	0.0023 U	0.0038 U	0.0021 U	0.0026 U	0.0023 U	0.0027 U	0.0037 U	0.0030 U	0.0031 U	0.0024 U	0.0027 U	0.0026 U	0.0036 U
	SS-2	3	1283	11/14/2017	1.7	0.31	0.36	0.55	0.021 I	0.014 I	0.36	0.011 U	0.036	0.012 U	0.2	3.6	0.012 I	3.5	1.2
	SS-3	2	0	11/14/2017	0.0094 U	0.011 U	0.0099 U	0.016 U	0.0089 U	0.011 U	0.0099 U	0.012 U	0.016 U	0.013 U	0.013 U	0.010 U	0.012 U	0.11 U	0.016 U
	SW-1	4	366	11/14/2017	0.015 l	0.051	0.086	0.016 U	0.027 I	0.013 I	0.086	0.012 U	0.016 U	0.013 U	0.044	0.011 I	0.024 I	0.083	0.70
	SW-2	4	SB-BOTTOM	11/14/2017	1.9	0.38	0.47	0.048	0.020 I	0.013 I	0.47	0.011 U	0.031 I	0.012 U	0.24	4.4	0.013 I	4.3	1.1
	23R(4')	4	0	1/18/2022	0.0016 U	0.0019 U	0.0027 U	0.0021 U	0.0021 I	0.0033 I	0.0021 U	0.0025 U	0.0031 U	0.0018 U	0.0046 I	0.0023 U	0.0025 U	0.0023 U	0.0034 I
soil	31R(2')	2	731	1/18/2022	2.6	0.0018 U	1.1	0.063	0.014	0.018	0.014	0.0042 I	0.065	0.0026 I	0.31	6.6	0.0097	11	1.1
removed	31R(4')	4	758	1/18/2022	3.2	0.0035 U	1.4	0.063	0.014 I	0.017	0.014 I	0.0047 U	0.058	0.0033 U	0.39	5.5	0.0094 I	8.0	1.2
	50 (2')	2	18	1/18/2022	0.0015 U	0.0018 U	0.0025 U	0.0020 U	0.0019 I	0.0033 I	0.0019 U	0.0023 U	0.0029 U	0.0016 U	0.0046 I	0.0021 U	0.0023 U	0.0021 U	0.0035 I
	50(4')	2	12	1/18/2022	0.0023 I	0.0018 U	0.0025 U	0.0020 U	0.0017 U	0.0016 U	0.0019 U	0.0024 U	0.0030 U	0.0017 U	0.0028 U	0.0022 U	0.0024 U	0.0022 U	0.0024 U
	51 (3')	3	33	1/18/2022		0.0021 U	0.0030 U	0.0023 U	0.0020 U	0.0019 U	0.0023 U		0.0035 U		0.0033 U	0.0025 U	0.0028 U	0.0025 U	0.0028 U
	SW-1R/SW-2R(3')	3	84	1/18/2022	0.056	0.0018 U	0.020	0.0047 I	0.0017 U	0.0020 I	0.0019 U	0.0023 U	0.0081 I	0.0017 U	0.036	0.088	0.0024 U	0.0021 U	0.29

NOTES:

I = reported value is in between laboratory limit of detection (LOD) and laboratory limit of quantitation (LOQ)

U= indicates that a specific compound was analyzed for but not detected. The reported value shall be the laboratory limit of detection.

NS = not sampled for particular consituent(s).

NA = not applicable

NC = not calculated

all constituents shown in mg/kg unless otherwise noted

# = Direct Exposure value not applicable except as part of the Benzo(a)pyrene equivalent.

b = Total Benzo(a)pyrene Equivalents calculated as per FDEP Conversion Table (Revised 11-26-07).

Soil Samples SS-1 through SW-2 Collected at Dispenser Closure Assessment (2017-See Appendix A)

Concentration exeeds SCTLs for Leachability

Concentration exceeds SCTLs for Direct Exposure

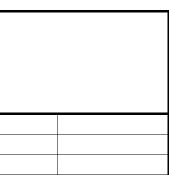
# Universal Project No. 5278

# Exhibit B

### Benzo(a)pyrene Conversion Table

For Direct Exposure Soil Cleanup Target Levels

Instructions can be found below the table


Facility/Site Name:	Davis Oil Company Inc	SCTL Type	Value	Units
Site Location:	726 E Main St, Immokalee, FL	Residential Direct Exposure SCTL	0.1	mg/kg
Facility/Site ID No.:	11/8518121	Industrial Direct Exposure SCTL	0.7	mg/kg
		Alternative SCTL (Optional)		mg/kg
	TEF = Toxic Equivalency Factor	Site Specific Background (Optional)		mg/kg

							CTL (Optional)		mg/kg		
	TEF = Toxic Ec	uivalency Factor				Site Specific Bac	kground (Optional)		mg/kg		
							1				
	Soil Sample #	SS-1	SS-2	SW-1	SW-2	23R	31R(2')	31R(4')	50(2')	SW-1R/SW-2R(3')	
	Sample Date	11/14/2017	11/14/2017	11/14/2017	11/14/2017	1/18/2022	1/18/2022	1/18/2022	1/18/2022	1/18/2022	
	Sample Location:	D-1	D-4	SW-3	SB-Bottom	23R(4')	31R(2')	31R(4')	50(2')	SW-1R/SW-2R(3')	
	Depth (ft):	2	3	4	4	4	2	4	2	3	
				C	ontaminant Con	centrations					
Contaminant	TEF	SS-1 (mg/kg)	SS-2 (mg/kg)	SW-1 (mg/kg)	SW-2 (mg/kg)	23R (mg/kg)	31R(2') (mg/kg)	31R(4') (mg/kg)	50(2') (mg/kg)	SW-1R/SW- 2R(3') (mg/kg)	
Benzo(a)pyrene	1.0	0.00105	0.021	0.027	0.02	0.0021	0.014	0.014	0.0019	0.00085	
Benzo(a)anthracene	0.1	0.0019	0.055	0.008	0.048	0.00105	0.063	0.063	0.001	0.0047	
Benzo(b)fluoranthene	0.1	0.0013	0.014	0.013	0.013	0.0033	0.018	0.017	0.0033	0.002	
Benzo(k)fluoranthene	0.01	0.00135	0.0055	0.006	0.0055	0.00125	0.0042	0.00235	0.00115	0.00115	
Chrysene	0.001	0.00185	0.036	0.008	0.031	0.00155	0.065	0.058	0.00145	0.0081	
Dibenz(a,h)anthracene	1.0	0.0015	0.006	0.0065	0.006	0.0009	0.0026	0.00165	0.0008	0.00085	
Indeno(1,2,3-cd)pyrene	0.1	0.00135	0.012	0.024	0.013	0.00125	0.0097	0.0094	0.00115	0.0012	
				E	Benzo(a)pyrene E	quivalents					
Contaminant	TEF	SS-1 (mg/kg)	SS-2 (mg/kg)	SW-1 (mg/kg)	SW-2 (mg/kg)	23R (mg/kg)	31R(2') (mg/kg)	31R(4') (mg/kg)	50(2') (mg/kg)	2R(3') (mg/kg)	
Benzo(a)pyrene	1.0	0.0011	0.0210	0.0270	0.0200	0.0021	0.0140	0.0140	0.0019	0.0009	0.0000
Benzo(a)anthracene	0.1	0.0002	0.0055	0.0008	0.0048	0.0001	0.0063	0.0063	0.0001	0.0005	0.0000
Benzo(b)fluoranthene	0.1	0.0001	0.0014	0.0013	0.0013	0.0003	0.0018	0.0017	0.0003	0.0002	0.0000
Benzo(k)fluoranthene	0.01	0.0000	0.0001	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Chrysene	0.001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0000	0.0000	0.0000
Dibenz(a,h)anthracene	1.0	0.0015	0.0060	0.0065	0.0060	0.0009	0.0026	0.0017	0.0008	0.0009	0.0000
Indeno(1,2,3-cd)pyrene	0.1	0.0001	0.0012	0.0024	0.0013	0.0001	0.0010	0.0009	0.0001	0.0001	0.0000
					Total Equiva						
Total Benzo(a)pyrene	Equivalents	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
					Comparisons t	o SCTLs					
Does This Sample	Exceed:	SS-1 (mg/kg)	SS-2 (mg/kg)	SW-1 (mg/kg)	SW-2 (mg/kg)	23R (mg/kg)	31R(2') (mg/kg)	31R(4') (mg/kg)	50(2') (mg/kg)	SW-1R/SW- 2R(3') (mg/kg)	
The Residential Direct Ex 0.1 mg/kg?		ок	ОК	ОК	ОК	ок	ок	ОК	ОК	ок	ок
The Industrial Direct Exp 0.7 mg/kg?		ОК	ок	ок	ОК	ОК	ок	ок	ок	ок	ОК
No Alternative SC	۲L Given	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
No Site Specific Backg	round Given	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

# Exhibit B

						TABLE 5: SC	IL ANALYTICAL S	UMMARY (	(MADEP)						7		
	Facility N Facility Add			s <mark>Davis Oi</mark> Main St., Im	il Company IN							Facility ID I	No. 1185181 L No.: 5278				
		1633.	7207730 L.	Wall St., III	•	all constituents	shown in mg/kg	unless othe	erwise noted	1		UNIVERS#	L NO 5276				
		Sampl	e		OVA					aboratory Ana	alyses						
	Boring/	Date Collected	Depth to Water	Sample Interval	Net OVA Reading	C11-C22 Aromatics	C19-C36 aliphatics	C9-C18 Aliphatics	C5-C8 Aliphatics	C9-C10 Aromatics	C9-C12 Aliphatics				1		
	Well No.		(ft)	(fbls)	(ppm)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)						
		Residential Expo				1,800	42,000	2,900	7,100	560	1,700						
		Leachability	/ SCTL			1,000	*	140,000	960	380	31,000				_		
	SW-1R/2R	1/18/2022	5	3	84	280	620 I	1700	81	38	61				-		
soil	31R(2)	1/18/2022	5	2	731	1800	2100 U	6200	187 I	259	147 I				_		
emoved	∽ 31R(4)	1/18/2022	5	4	758	1700	2100 U	6100	332	492	112				_		
	* Not a heal	th concern for this	exposure so	cenario													
	•	ter 62-777 Natura								-	nown to be higl	•					
	•	er 62-777 Ground			/el						prepared or and		-				
		er 62-777 Soil Clea	• •								ted at or above	method dete	ection limits				
		nlighted values in				5			•	uantitative lim							
		nlighted values in	-					D'			luted due to ta	-					
		ly indicates comp				SCTL <mdl< td=""><td></td><td></td><td></td><td></td><td>ue to matrix int</td><td>erference. D</td><td>ilution facto</td><td>ors are included in</td><td>)</td><td></td><td></td></mdl<>					ue to matrix int	erference. D	ilution facto	ors are included in	)		
		S = Constituent no	•	or not sample	ed				final resu			. Ichevetew (	wa wa wa fa wa aw	a a sifi a data ila			
		<ul> <li>R = Value not report</li> <li>P = Not Detected</li> </ul>	orted								ase jnarrative i detection limit		report for sp	pecific details			
	Facility N Facility Add				TABLE 6A: GR il Company IN nmokalee, FL		NALYTICAL SUM	IMARY BTE	X/MTBE (SP	LP LEACHATE	)	-	No. 1185181 IL No.: 5278				
			7207730 E.		-	constituents s	hown in ug/l (ppt	) unless otł	nerwise note	ed			2 110 3270	,	_		
								Methyl		1-	2-						
						Total		tert-Butyl	Naphthale	Methylnap	Methylnaphth	FL-PRO					
	Location	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Total BTEX	Ether	ne	hthalene	alene	(mg/L)					
	NADC		100	400	300	200	NA	200	140	280	280	50					
	GCTL		1	40	30	20	NA	20	14	28	28	5					
soil 🧹	- 31R(2')	1/18/2022	3.9	0.89 l	250	2.9	260	0.71 U	110	82	100	NS					
removed	31R(4')	1/18/2022	11	1.8	470	4.5	490	0.71 U	210	150	200	NS					
		nlighted values in nlighted values in															
			JT				R ANALYTICAL SU	JMMARY P	AH'S (SPLP	LEACHATE)							
	Facility N				il Company IN	С						Facility ID I					
	Facility Add	ress:	726/730 E.	Main St., Im	-			<b>N</b> 1 - 1				UNIVERSA	L No.: 5278				
	•				al	constituents s	hown in ug/l (ppt			ed						1 1	
	·			1 '				Benzo(b)fl		D. (1)5		Dibenz(a,	-				
				1 a		Benz(a)Anth				Benzo(k)flu		h)Anthrac		<b>F</b> lucescere		Phenanthr	
		_	-	Acenapht	A 1			е	Inperviene	oranthene	Chrysene	ene	ene	Fluorene	Indeno(1,2,3-cd)pyrene		Pyrer
	Location	Date	hene	hylene	Anthracene		Benzo(a)pyrene		24.00	50	400	<u> </u>	2000	2000	-		~ ~ ~ ~ ~
	Location NADC	Date	hene 200	hylene 2100	21000	5	20	5	2100	50	480	0.5	2800	2800	5	2100	
	Location NADC GCTL		hene 200 20	hylene 2100 210	21000 2100	5 0.05	20 0.2	5 0.05	210	0.5	4.8	0.005	280	280	0.05	210	210
	Location NADC GCTL 31R(2')	1/18/2022	hene           200           20           5.6	hylene 2100 210 0.0080 U	<b>21000</b> <b>2100</b> 1.1	5 0.05 0.045 1	20 0.2 0.0091 U	<b>5</b> <b>0.05</b> 0.014	<b>210</b> 0.011 U	0.5 0.0068 U	<b>4.8</b> 0.038 I	0.005 0.013 U	<b>280</b> 0.29	<b>280</b> 9.3	0.05 0.011 U	<b>210</b> 13	<b>210</b> 1.2
	Location NADC GCTL 31R(2') 31R(4')	1/18/2022 1/18/2022	hene           200           20           5.6           12	hylene           2100           210           0.0080         U           0.0080         U	<b>21000</b> <b>2100</b> 1.1 2.3	5 0.05	20 0.2	5 0.05	210	0.5	4.8	0.005	280	280	0.05	210	<b>210</b> 1.2
	Location NADC GCTL 31R(2') 31R(4') Bolded/hig	1/18/2022 1/18/2022 Nighted values in	hene           200           20           5.6           12           dicate comp	hylene           2100           210           0.0080         U           0.0080         U           0.0080         U	21000 2100 1.1 2.3 red above GCTLs	5 0.05 0.045   0.12	20 0.2 0.0091 U	<b>5</b> <b>0.05</b> 0.014	<b>210</b> 0.011 U	0.5 0.0068 U	<b>4.8</b> 0.038 I	0.005 0.013 U	<b>280</b> 0.29	<b>280</b> 9.3	0.05 0.011 U	<b>210</b> 13	<b>2100</b> <b>210</b> 1.2 3.1
soil moved	Location NADC GCTL 31R(2') 31R(4') Bolded/hig	1/18/2022 1/18/2022	hene           200           20           5.6           12           dicate comp	hylene           2100           210           0.0080         U           0.0080         U           0.0080         U	21000 2100 1.1 2.3 red above GCTLs	5 0.05 0.045   0.12	20 0.2 0.0091 U	<b>5</b> <b>0.05</b> 0.014	<b>210</b> 0.011 U	0.5 0.0068 U	<b>4.8</b> 0.038 I	0.005 0.013 U	<b>280</b> 0.29	<b>280</b> 9.3	0.05 0.011 U	<b>210</b> 13	<b>210</b> 1.2
soil moved	Location NADC GCTL 31R(2') 31R(4') Bolded/hig	1/18/2022 1/18/2022 Nighted values in	hene           200           20           5.6           12           dicate comp	hylene           2100           210           0.0080         U           0.0080         U           0.0080         U	21000 2100 1.1 2.3 red above GCTLs	5 0.05 0.045   0.12	20 0.2 0.0091 U	<b>5</b> <b>0.05</b> 0.014	<b>210</b> 0.011 U	0.5 0.0068 U	<b>4.8</b> 0.038 I	0.005 0.013 U	<b>280</b> 0.29	<b>280</b> 9.3	0.05 0.011 U	<b>210</b> 13	<b>210</b> 1.2





### Exhibit B

#### Facility ID No. 118518121 Universal Project No. 5278

Facility Name: Gator Food, Inc. Facility Address: 726/730 E. Main St., Immokalee, FL

all constituents shown in ug/L (ppb) unless otherwise noted

Location	Date	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total BTEX	MTBE	Naphthalene
and the second se	Concentration of the party of t	r Natural Attenuation Defau		and the second state of the se	, cylenee			
Table V. Chapt		100	400	300	200	NA	200	140
Table II. Chanta	r 62-777; Groundwater		400		200	100		
Table I. Chapte	1 02-111, Groundwater	1	40	30	20	NA	20	14
MW-4	06/29/00	<1	<1	<1	· <2	<5	<5	<5
MW-4	07/23/00	<1 .	<1	<1	<2	<5	<5	<5
MW-4	11/28/00	<1	<1	<1.	<2	<5	<5	<5
MW-4	02/24/01	<1	<1	<1	<2	<5	<5	<5
MW-4	06/12/01	<1	<1	<1	<2	<5	<5	<5
MW-4	02/13/02	<1	<1	<1	<2	<5	. <5	<5
MW-4	09/21/06	<0.5	<0.5	<0.5	<1.5	<3.	<1	<2
MW-4	09/20/07	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	0.2562 U	0.199 U
		-						
MW-5D	06/29/00	<1	<1	<1	<2	<5	<5	<5
MW-5D	07/23/00	<5	<5	<5	<5	<20	705.0	<5
MW-5D	11/28/00	<1	<1	<1	· <2	<5	280.0	<5
MW-5D	02/24/01	<1	<1	<1	<2	<5	<5	<5
MW-5D	06/12/01	<10	<10	<10	<20	<50	310.0	<5
MW-5D	02/13/02	<1	<1	<1	<2	<5	24.8	<5
MW-5D	09/21/06	<0.5	<0.5	<0.5	<1.5	<3	8.576	<2
MW-5D	09/20/07	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	5.032	0.199 U
			N 100 100					
MW-9	06/29/00	<1 .	<1	<1	<2	<5	48.0	<5
MW-9	07/23/00	18.1	<1	40.3	81.7	140.1	97.4	<5
MW-9	11/28/00	<1	<1	<1	<2.	<5	<5	<5
MW-9	02/24/01	<1	<1	<1	<2	<5	5	<100
MW-9	06/12/01	<1-	<1	<1	<2	<5	10.6	<5
MW-9	02/13/02	<1	<1	<1	<2	<5	<5	<5
MW-9	09/21/06	<0.5	<0.5	<0.5	<1.5	<3 .	10.93	<2
MW-9	09/20/07	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	4.106	0.199 U
MW-10	06/29/00	950.0	<10	1470.0	791.0	3211.0	440.0	105.0
MW-10	07/23/00	760.0	<20	1340.0	450.0	2550.0	405.0	145.0
MW-10	11/28/00	NS	NS	NS	NS	NS ·	NS	NS
MW-10	02/24/01	NS	NS	NS	NS	NS	NS	NS
MW-10	06/12/01	NS	NS	NS	NS	NS	NS	NS
MW-10	02/13/02	NS	NS	NS	NS	NS	NS	NS
MW-10	09/21/06	<0.5	<0.5	<0.5	<1.5	<3	. 10.19	<2

Note: The site manager has reviewed all the lab reports and any missing PAHs or carcinogenic PAHs are below CTLs

# Exhibit B

Facility Name: Gator Food, Inc. Facility Address: 726/730 E. Main St., Immokalee, FL Facility ID No. 118518121 Universal Project No. 5278

Location	Date	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total BTEX	МТВЕ	Naphthalene
l'able V: Chapt	er 62-777; Groundwate	r Natural Attenuation Defa	ault Source Concentrat	ons				
		100	400	300	200	NA	200	140
Table I: Chapte	r 62-777; Groundwater	Cleanup Target Levels						
		1	40	30	20	NA	20	14
viw-10	09/20/07	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1501 U	15.29	0.199 U
/W-12	06/29/00	23.5	<1	11.0	<2	34.5	<5	<5
MW-12	07/23/00	<1	<1	<1	<2	<5	14.0	<5
лW-12	11/28/00	<1	<1	· <1 ·	<2 .	<5	<5	<5
/W-12	02/24/01	<1	<1	<1	<2	<5	<5	<5
WW-12	06/12/01	<1	<1	<1	<2	<5	23.7	<5
ww-12	02/13/02	<1	<1	<1	<2	<5	<5	<5
ww-12	09/21/06	<0.5	<0.5	<0.5	<1.5	<3	<1	<2
лW-12	09/20/07	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	3.640	0.199 U
/W-14	06/29/00	<5	<5	11.0	6.0	17.0	1230.0	<5
AW-14	07/23/00	115.0	1.4	13.8	41.9	272.0	47.1	5.0
/W-14	11/28/00	32.5	<5	14.0	9.5	56.0	325.0	<5
A₩-14	02/24/01	84.0	<10	22.0	22.0	128.0	1670.0	<5
 /W-14	06/12/01	16.5	1.5	25.2	27.0	70.2	470,0	<5
/₩-14	02/13/02	4,5	<1	5.7	3.4	13.6	125.0	<5
/W-14	09/21/06	<0.5	<0.5	<0.5	<1.5	<3	<1	<2
	09/20/07	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	0.2562 U	0.199 U
AVV-94	02/08/08	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	0.2562 U	NS
/W-15D	06/29/00	4.0	3.2	<1	109.2	116.4	145.0	40.0
AW-15D	07/23/00	<1	<1	<1	1.5	1.5	11.4	<50
4W-15D	11/28/00	3.7	4.1	1.5	29,3	38.6	27.7	7.0
/W-15D	02/24/01	<1	<1	<1	<2	<5	18.4	<5
4W-15D	06/12/01	<1	<1	<1	<2	<5	29.9	<5
1W-15D	02/13/02	5.4	2.9	2.5	154.8	165.6	55.5	<25
1W-15D	09/21/06	<0.5	<0.5	<0.5	<1.5	<3	<1	<2
1W-15D	9/20/070	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	0.2562 U	0.199 U
	06/29/00	NS	NS	NS	NS	NS	NS	NS
/W-16	07/23/00	NS	NS	NS	NS	NS	NS	NS -

Note: The site manager has reviewed all the lab reports and any missing PAHs or carcinogenic PAHs are below CTLs

### Exhibit B

#### Facility ID No. 118518121 Universal Project No. 5278

5

<5

<100

Facility Name: Gator Food, Inc. Facility Address: 726/730 E. Main St., Immokalee, FL

DUP (9)

02/24/01

Location	Date	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total BTEX	MTBE	Naphthalene
Table V: Chapter	62-777; Groundwat	er Natural Attenuation Defau	ult Source Concentra	ations				
I		100	400	300	200	NA	200	140
Table I: Chapter	62-777: Groundwate	er Cleanup Target Levels						
· · · ·		1	40	30	20	NA	20	14
MW-16	11/28/00	NS	NS	NS	NS	NS	NS	NS .
MW-16	02/24/01	NS	NS	NS	NS	NS	NS	NS
MW-16	06/12/01	NS	NS	NS	NS	NS	NS	NS
MW-16	02/13/02	NS	NS	NS	NS	NS	NS	NS
MW-16	09/20/07	could not locate				1		
						1		
MW-17	06/29/00	34.7	<1	140.0	111.7	286.4	<5	<5
MW-17	07/23/00	44.3	3.0	39.0	20.8	107.1	84.3	<5
MW-17	11/28/00	40.5	<5 .	140.0	47.0	227.5	1130.0	<5
MW-17	02/24/01	11.4	<2	58.2	9.2	78.8	545.0	<5
MW-17	06/12/01	<1	<1	8.8	<2	8.8	260.0	<5
MW-17	02/13/02	<1	<1	1.4	1.3	2.7	180.0	<25
MW-17	09/21/06	14.47	1.125	72.66	17:808	106.063	136.0	16.5
MW-17	09/20/07	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	2.383	0.199 U
MW-17	02/08/08	0.93791	0.1601 U	3,111	3.044	7.0929	10.21	NS
MW-24	06/29/00	345.0	<2	125.0	35.4	505.4	64.8	<5
MW-24	07/23/00	71.0	<1	85.5	14.0	170.0	17.2	<5
MW-24	11/28/00	<1	<1	2.3	<2	2.3	<5	<5
MW-24	02/24/01	275.0	3.8	63.4	7.8	350.0	65.8	<5
MW-24	06/12/01	3.8	<1 .	49.0	4.8	57.6	18.4	<5
MW-24	02/13/02	<1	<1	<1	<2	<5	31.6	<5
MW-24	03/13/07	1.033	<0.1601	3.5	<0.231	4.6	5.5	<0.199
MW-24	09/20/07	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	0.2562 U	0.199 U
MW-18 USI	09/20/07	0.2105 U	0.1601 U	0.1959 U	0.2310 U	0.1601 U	0.6492 1	0.199 U
MW-18 USI	02/08/08	0.2105 U	0 1601 U	0.1959 U	0.2310 U	0.1601 U	0.2562 U	NS
DUP#1 (24)	06/29/00	355.0	<2	130.0	42.4	427.4	61.2	<5
DUP#1 (24)	06/29/00	925.0	<10	1510.0	840.0	3275.0	395.0	94.0
DUP#2 (10)	07/23/00	700.0	<20	1320.0	355.0	2375.0	360.0	145.0
DUP#2 (15D)	07/25/00	<5	<5	<5	14.5	14.5	52.5	<50
DUP#2 (15D) DUP (15D)	11/28/00	3.8	4.3	1.5	31.9	41.5	27.4	5.0
JUP (100)	11/20/00	5.0		1.0				<100

<1

<2

Page 3 of 4 Note: The site manager has reviewed all the lab reports and any missing PAHs or carcinogenic PAHs are below CTLs

<1

<1

Facility Name: Gator Food, Inc. Facility Address: 726/730 E. Main St., Immokalee, FL

### Exhibit B

#### Facility ID No. 118518121 Universal Project No. 5278

all constituents shown in ug/L (ppb) unless otherwise noted Ethyl-Total Total Date Toluene BTEX Location Benzene benzene **Xylenes** MTBE Naphthalene Table V. Chapter 62-777; Groundwater Natural Attenuation Default Source Concentrations 100 400 300 200 NA 200 Table I: Chapter 62-777; Groundwater Cleanup Target Levels 40 30 20 NA 20 ୀ DUP(5D) 06/12/01 <1 <1 <1 <2 <5 34

Total Xylenes = sum of ortho-, meta-, and para- xylenes

Total BTEX = sum of Benzene, Toluene, Ethylbenzene and Total Xylenes

BDL = Below Laboratory Detection Limits

NA = Not Applicable or Not Available

NS = Not Sampled for particular constituent(s)

140

14

<5

Note: The site manager has reviewed all the lab reports and any missing PAHs or carcinogenic PAHs are below CTLs:



FLORIDA DEPARTMENT OF Environmental Protection

> Bob Martinez Center 2600 Blair Stone Road Tallahassee, FL 32399-2400

Ron DeSantis Governor

Jeanette Nuñez Lt. Governor

Shawn Hamilton Secretary

### Memorandum

То:	Natasha Lampkin, Program Administrator Petroleum Restoration Program Florida Department of Environmental Protection
From:	Alfie Nazario, P.E. Petroleum Restoration Program Section 5 Florida Department of Environmental Protection
Subject:	Recommend Approval of Site Rehabilitation Completion Order Davis Oil Company Inc 726 E Main Street, Immokalee, Collier County FDEP Facility Identification # 118518121

I have reviewed and concur that the components of Source Removal Report (SRR) and No Further Action Proposal (NFAP) dated and received August 29, 2022, the Supplemental Site Assessment Report (SSAR) dated and received March 10, 2022, and the Addendum to the SSAR dated and received May 2, 2022, prepared for the March 17, 1994 and January 29, 2018 petroleum product discharges discovered at the above-referenced facility satisfy the requirements set forth in Chapter 62-780, Florida Administrative Code (F.A.C.) and that the data and conclusions in this report provide reasonable assurances that the site rehabilitation requirements stated in Chapter 62-780, F.A.C., have been met.

Alfie Nazario Digitally signed by Alfie Nazario Date: 2022.10.31 08:16:01 -04'00'

Alfie B. Nazario, P.E. Senior Engineer NorthStar Contracting Group, Inc. Petroleum Restoration Program Section Five

From:	Microsoft Outlook
То:	davisoilco@gmail.com
Subject:	Relayed: Site Rehabilitation Completion Order FAC ID 118518121
Date:	Monday, November 21, 2022 2:15:42 PM
Attachments:	Site Rehabilitation Completion Order FAC ID 118518121.msg

Delivery to these recipients or groups is complete, but no delivery notification was sent by the destination server: davisoilco@gmail.com (davisoilco@gmail.com) <mailto:davisoilco@gmail.com> Subject: Site Rehabilitation Completion Order FAC ID 118518121



## Department of Environmental Protection

2600 Blair Stone Road ♦ Tallahassee, Florida 32399-2400

DEP Form: <u>62-761.900(2)</u> Form Title: <u>Storage Tank Facility Registration</u> <u>Form</u> Effective Date: <u>July 2019</u> Incorporated in Rule <u>62-761.400, F.A.C.</u>

### **Storage Tank Facility Registration Form**

	v Registration Instructions Before Co		202 51 11 51 5	
Submit this completed form for the facility whe				es
Please check all that apply: New Registration	n New Own Info Update/Correction Existing O			te/Correction
A. FACILITY INFORMATION County: Collie	er	DEP Facility ID: <u>85181</u>	21	
Facility Name: <u>Gator Foods</u>				
Facility Address: <u>730 E Main St</u>		City: Immokalee		34142 3817
Facility Contact: <u>DONALD DAVIS</u>		Business Phone: <u>(239) 657-424</u>		
Facility Type(s): <u>D</u>		esponsibility Mechanism (choos		ice Other
24 Hour Emergency Contact:	E	mergency Phone:		
B. ACCOUNT OWNER INFORMATION: Identi	fy the Party responsible for payment of	Registration Fees at the facility location	n named above	
Legal Entity: <u>GATOR FOODS INC</u>				
Contact Person: Donald Davis		STCM Account Nu	umber (if known)	: <u>38236</u>
Address: <u>540 New Market rd East</u>				
City: <u>Immokalee</u> Telephone: <u>(239) 657-4244</u>	State: <u>FL</u>		Zip:	34142
Telephone: <u>(239) 657-4244</u>	Email Address: <u>davisoil</u>	co@gmail.com		
C. REAL PROPERTY OWNER INFORMATION:				
Legal Entity: <u>Please see the attached</u>			ctive Date:	
Contact Person:				
Address:				
City:				:
Telephone:				
D. TANK/VESSEL INFORMATION: Complete or				
Tank ID T or V A or U Capacity In:	stallation Date Content Code Status	Effective Date Construction	Piping	Monitoring
1		· ·		
2		· ·		
3				
4				
_				
5				
6		·		
7		·		
8				

Facility Registration Certification: To the best of my knowledge and belief, all information submitted on this form is true, accurate and complete.

The person signing this form is the: (check all that apply)

Account Owner (Responsible for Registration Fees)

Real Property Owner

Donald Davis

Signature (right click to sign)

Donald Davis Printed Name

06/08/2020

Date

Title

Submit this form to tankregistration@floridadep.gov

### **Other Additional Details**

### **Property Owner(s)**

Company Name:	GATOR FOODS INC
Name:	Donald Davis
Address Line 1:	540 New Market rd East
Address Line 2:	
City:	Immokalee
State:	FL
Zip Code:	34142
Phone Number:	(239) 657-4244
Cell Number:	
Fax Number:	
E-mail Address:	davisoilco@gmail.com

### Tank/Vessel Information

If you are editing the Tank ID, Installation Date or Tank Capacity, the new input will not be stored. To modify a Tank ID, Installation Date or Tank Capacity you must contact the Storage Tank registration staff at (850) 245-8839 or by e-mail at TankRegistration@dep.state.fl.us

Tank ID:	1
<b>T/V:</b>	TANK
A/U:	ABOVEGROUND
Capacity:	10159
Installed:	07/01/1962
Content:	В
Status:	U
Status Effective Date:	06/08/2020
Construction:	С, К
Piping:	B, C, F, A, J, K, L
Monitoring:	Q, K, 2, 4
Tank ID:	10
Tank ID: T/V:	10 TANK
	-
T/V:	TANK
T/V: A/U:	TANK ABOVEGROUND
T/V: A/U: Capacity:	TANK ABOVEGROUND 10000
T/V: A/U: Capacity: Installed:	TANK ABOVEGROUND 10000 07/01/1990
T/V: A/U: Capacity: Installed: Content:	TANK ABOVEGROUND 10000 07/01/1990 D
T/V: A/U: Capacity: Installed: Content: Status:	TANK ABOVEGROUND 10000 07/01/1990 D U
T/V: A/U: Capacity: Installed: Content: Status: Status Effective Date:	TANK ABOVEGROUND 10000 07/01/1990 D U 06/08/2020

Monitoring:	Q, K, 2, 4
Tank ID:	2
<b>T/V:</b>	TANK
A/U:	ABOVEGROUND
Capacity:	10159
Installed:	07/01/1962
Content:	В
Status:	U
Status Effective Date:	06/08/2020
Construction:	С, К
Piping:	B, C, F, A, J, K, L
Monitoring:	Q, K, 2, 4
Tank ID:	3
T/V:	TANK
<b>A/U:</b>	UNDERGROUND
Capacity:	1029
Installed:	07/01/1962
Content:	А
Status:	В
Status Effective Date:	06/30/1989
Construction:	С, К
Piping:	A, B, C, F, J, L
Monitoring:	2, 4, K, Q
Tank ID:	4
T/V:	TANK
A/U:	ABOVEGROUND
Capacity:	10159
Installed:	07/01/1962
Content:	В
Status:	U
Status Effective Date:	06/08/2020
Construction:	С, К
Piping:	B, C, F, A, J, K, L
Monitoring:	Q, K, 2, 4
Tank ID:	5
T/V:	TANK
A/U:	UNDERGROUND
Capacity:	6333
Installed:	07/01/1963

Content: Status: Status Effective Date: Construction: Piping: Monitoring:	E B 10/31/1991 C D Y
Tank ID:	6
T/V:	TANK
A/U:	UNDERGROUND 2990
Capacity: Installed:	2990 07/01/1962
Content:	E
Status:	B
Status Effective Date:	10/31/1991
Construction:	C
Piping:	D
Monitoring:	Y
Tank ID:	7
T/V:	TANK
A/U:	ABOVEGROUND
Capacity:	10159
Installed:	07/01/1962
Content:	D
Status:	U 06/09/2020
Status Effective Date:	06/08/2020
Construction:	C, K B, C, F, A, J, K, L
Piping: Monitoring:	D, C, F, A, J, K, L Q, K, 2, 4
montor mg.	<u>, к</u> , 2, т
Tank ID:	8
T/V:	TANK
A/U:	ABOVEGROUND
Capacity:	10159
Installed:	07/01/1962
Content:	D
Status:	U
Status Effective Date:	06/08/2020
Construction:	C, K
Piping:	B, C, F, A, J, K, L
Monitoring:	Q, K, 2, 4

Tank ID:	9
<b>T/V:</b>	TANK
A/U:	ABOVEGROUND
Capacity:	10159
Installed:	07/01/1962
Content:	В
Status:	U
Status Effective Date:	06/08/2020
Construction:	С, К
Piping:	B, C, F, A, J, K, L
Monitoring:	Q, K, 2, 4

### Florida Department of Environmental Protection

Bob Martinez Center • 2600 Blair Stone Road • Tallahassee, Florida 32399-2400

#### Division of Waste Management - Storage Tank Facility Registration Form Registration Instructions and Codes List

Storage tank registration is available online through the DEP Business Portal in lieu of the paper form:

- DEP Business Portal can be found: <u>Online Services Business Portal (ESSA)</u>
- Instructions on how to navigate the DEP Business Portal can be found on the DEP Registration web page: <u>Storage Tank Facility Registration</u>

#### Storage Tank Facility Registration Form

In the first outlined section block, identify the types of information being submitted on the registration form. [Forms 62-761.900(2) for Underground Storage Tanks (USTs), and 62-762.901(2) for Aboveground Storage Tanks (ASTs). For facilities with both types of tanks, one form may be used].

Check **New Registration** when the **location** is being registered for the first time and no Facility Identification number exists. If submitting a revised Registration form, check all other boxes that apply to designate the type(s) of revisions being submitted.

#### A. Facility Information

County	List the county where the storage tank facility is located.
Facility ID	Include the DEP Facility Identification number whenever possible. Write in "Pending" when submitting a new registration for the first time. Remember: the Facility ID number identifies the location, and it does not change even when a facility is transferred to a new owner upon sale of the facility.
Facility Name	Provide the current name of the business establishment operating at the facility location. When registering an abandoned facility, where tanks exist but there is no operational business, identify the location with the property owner's name, as in "Smith Property", if no other facility name is being used.
Facility Address	Include the street number and name. In a rural area with no street number associated with it, provide the parcel ID number along with directions (e.g., 'x' miles N of intersection). Provide the name and telephone number of a contact person or manager <i>on location</i> , where possible.
Facility Type	This information is an explanation or term that most closely describes the operational use of the facility. Select the code(s) that provides the best or most appropriate description of the facility.
F. Federal	is owned by a government entity, select the appropriate type from the following: Government H. Local or City Government N. Native Tribal Lands vernment I. County Government

- 2. If the facility meets the definition of "bulk product facility" a waterfront location with at least one aboveground tank with a capacity greater than 30,000 gallons which is used for the storage of pollutants ("Pollutants" includes oil of any kind and in any form, gasoline, pesticides, ammonia, chlorine, and derivatives thereof, excluding liquefied petroleum gas"); select the type from:
  - T. Coastal bulk product facility facility, as defined above and located on the Florida coast, may have storage tank systems that store hazardous substances in addition to pollutants. ("Coastline means the line of mean low water along the portion of the coast that is in direct contact with the open sea and the line marking the seaward limit of inland waters, as determined under the Convention on Territorial Seas and the Contiguous Zone, 15 U.S.T. (Pt. 2) 1606.").
  - **S.** Inland waterfront bulk product facility a facility, as defined above and located on "inland waterways" (lakes, rivers), may have storage tank systems that store hazardous substances in addition to pollutants.
- 3. When the facility is a "waterfront location", but not a *bulk product facility* as defined above, select the most appropriate type from:
  - V. Marine fueling facility a commercial, recreational, or retail coastal facility that provides fuel to vessels and may store other pollutants and/or hazardous substances on site.

#### **Facility Type continued**

- **W.** Waterfront fueling facility a commercial, recreational, or retail facility located on a non-coastal waterway that provides fuel to vessels and may store other pollutants and/or hazardous substances on site.
- 4. When the facility is not described as previously stated, select the most appropriate type from:
  - A. Retail Station primarily supplies vehicular fuel to automotive customers; may store other regulated substances.
  - **C.** Fuel User, Non-retail primarily stores motor fuel and/or other pollutants or hazardous substances for consumption by facility/owner/operator.
  - D. Inland Bulk Petroleum Storage inland facility with no waterfront access, that has multiple active UST and/or AST storage systems used primarily for storage of pollutants intended for distribution. May also store hazardous substances on-site for facility consumption and/or distribution purposes.
  - E. Industrial Plant inland facility with no waterfront access; may include power plants and facilities designed for manufacturing and/or chemical processing; may have multiple active UST and/or AST storage systems used for storage of pollutants and/or hazardous substances intended for facility consumption.
  - J. Collection Station maintenance or other related facility that acquires and temporarily stores used and/or waste oil prior to recycling and/or disposal.
  - K. Inland Bulk Chemical Storage inland facility with no waterfront access, that has multiple active UST and/or AST storage systems and/or compression vessels used for storage of hazardous substances intended for distribution. May also store pollutants on site for facility consumption and/or distribution purposes.
  - L. Chemical User facility primarily uses regulated hazardous substance tanks on site; may also store pollutants.
  - M. Agricultural facility actively used in production of crops, plants, or livestock.
  - P. UST Residential (>1100 gallons) residence with USTs regulated by Federal Environmental Protection Agency.
  - Z. Other Identify the type of establishment that you are registering.

**Financial Responsibility** – The demonstration of financial responsibility shall be made by the owner or operator in accordance with 40 CFR 280, Subpart H. Check box for Insurance or Other (includes all other financial responsibility methods).

24 Hour Emergency Contact - Provide the name and telephone number of the Emergency Contact for this facility.

#### B. Account Owner Information

- Provide the name, address, contact name, telephone number, and email address of the individual(s) and/or business(es) that are responsible for the operation of the storage tanks and for the payment of DEP annual Storage Tank Registration fees. The Account Owner is responsible for payment of the annual storage tank registration fees and will receive the annual storage tank registration placard(s) upon payment. Please provide your account owner's (STCM) email address for your Accounts Payable (AP) or the contact to whom all invoices are to be emailed.
- 2. When submitting revisions to owner's contact name or address information, please include their STCM Account Number.
- 3. When ownership changes, submit a registration form complete with the effective date of ownership and new account owner's signature.

#### C. Real Property Owner Information

- 1. Provide the legal entity name, address, contact name, telephone number, and email address of the individual(s) and/or business(es) that are vested with ownership, dominion or legal or rightful title to the real property.
- 2. Submit a registration form when the property ownership changes, complete with the date.

D. Tank/Compression Vessel Information - Complete one row in Section D for each storage tank and/or compression vessel system located at the facility. Use the following system description codes where appropriate.

- 1. Tank ID number the systems sequentially, or provide a unique ID number; do not use symbols (#, %, -, etc.).
- 2. Tank or Vessel Indicator choose T or V to describe the system type.
- Tank Placement choose A or U to designate aboveground or underground placement of the system. 3.
- Tank Capacity enter the storage tank capacity in gallons. 4.
- Installation Date record the date of installation in 'MM/YY' format; provide a best estimate if unknown. 5.

M Fuel Oil: On-site Heating Only; USTs or ASTs < 30K gals^

- Tank Content record the current content (or last content, if system is closed or out-of-service) from the list below: 6.
- Leaded Gasoline Α
- Unleaded Gasoline (No Ethanol) в
- D **Diesel Fuel**

Kerosene

Waste Oil

- Aviation Gasoline
- Jet Fuel

к

L

- Diesel Fuel-Emergency Generator G
- S Chlorine Compound

- Unknown Substance v
  - Z Other Substance (please identify)

W Petroleum-based Additive Product

- Biodiesel (B20) 7
- 8 F10 Blend of 10% Ethanol/90% Gasoline

X Miscellaneous Petroleum-based Product

- 9 E85 Blend of 85% Ethanol/15% Gasoline
- * Mineral Acid = Hydrobromic acid, Hydrochloric acid, Hydrofluoric acid, Phosphoric acid and Sulfuric acid.
- ^ M = fuel is used solely to heat the facility premises and must be stored in a tank with capacity < 30,000 gallons; exempt from regulation.
- [¥] N = fuel is distributed as heating fuel, or fuel is used solely to heat the facility premises, but the storage tank capacity exceeds 30,000 gallons.

** Compartmented tanks – register as a single tank; itemize the size and contents of each compartment. See construction miscellaneous attributes. ** Manifold tanks – register as individual storage tanks; with individual size and content – even though they are "connected".

- Status record the current status of the system, and the status effective date (or best estimate) in 'MM/YY' format. Update the tank status timely, as necessary for tanks moving between "in service" and "out-of-service" status.
  - A. Properly closed in-place UST filled with sand, concrete or other inert material; AST rendered unusable.
  - В. Removed from the site.
  - D. Deleted Data Error Added to STCM in error; may be a duplicate tank (and/or facility), or tank was registered prior to installation and decided not to have tank installed.
  - Construction modified AST constructed as a "mobile tank" or enclosed in a building; no longer retains a E. "regulated" status.
  - M. Moved to New Site Designation that identifies a tank as removed from a particular facility and reinstalled at a second facility.
  - T. Out-of-service tank Tank system that is designated as out-of-service by the owner or operator.
  - U. In-service Tank system that is NOT designated as out-of-service by the owner or operator.
  - V. Temporary out-of-service Field erected storage tank system that is designated as temporary out-of-service by the owner or operator.
  - Non-regulated use/process Exempt from regulation due to how the tank or substance is used; i.e., tank stores Х. diesel used in FLOWTHROUGH process.
  - Non-regulated product Stored in tank; provide status effective date when status relates to a 'change in product' Z. from a regulated substance to a non-regulated substance for a particular storage tank.
- 8. Construction, Piping, and Monitoring Attributes Select from the lists on the following page the codes that best describe the attributes of each storage tank system.

N Fuel Oil: Distribution; or On-site Heating - ASTs > 30K gals¥ O New and Lube Oil

R Ammonia Compound

Q Pesticide

- Е
- Used Oil J
- T Hazardous Substance (CERCLA)
- U Mineral Acid*
- V Grades 5 & 6 Bunker "C" Residual Oils

CONSTRUCTION		
Primary Construction:	C Steel	X Concrete
	D Unknown	<ul><li>Y Polyethylene</li><li>Z Other DEP approved protection method</li></ul>
	<ul><li>E Fiberglass</li><li>F Fiberglass-clad steel</li></ul>	
Overfill/Spill:	A Ball check valve	O Tight fill
	M Spill containment bucket	P Level gauges, high-level alarms
	N Flow shut-off	<b>Q</b> Other DEP approved protection method
Corrosion Protection	<b>G</b> Cathodic protection – sacrificial anode	H Cathodic protection – impressed current
Secondary Containment	<ul> <li>I Double-walled construction: single material (out</li> <li>R Double-walled construction: dual material (oute "jacket")</li> </ul>	er tank material same as inner tank material) r tank – concrete, approved synthetic material, or tank
	J Synthetic liner in tank excavation	
	<b>K</b> Concrete, synthetic material, and/or off-site clay	s beneath AST and in containment area
	S Other DEP approved/registered containment sys	
Construction:	B Internal Lining	U Field Erected
Miscellaneous Attributes	L Compartmented	W Built on supports
PIPING		
Primary Construction	B Steel or Galvanized Metal	X No piping associated with tank
•	C Fiberglass	Y Unknown
	N Approved Synthetic Material	<b>Z</b> Other DEP approved piping material
Corrosion Protection	<ul> <li>D External Protective Coating</li> <li>E Cathodically Protected with Sacrificial Anode or I</li> </ul>	mpressed Current
Secondary Containment	<ul> <li>F Double-walled construction: single material (oute</li> <li>M Double-walled construction: dual material (oute</li> <li>G Synthetic liner or box/trench liner in piping excan</li> <li>P Internal Piping: contained within an internal sum dispenser</li> </ul>	pipe approved synthetic material or pipe "jacket")
Secondary Containment Piping:	<ul> <li>M Double-walled construction: dual material (outer</li> <li>G Synthetic liner or box/trench liner in piping excan</li> <li>P Internal Piping: contained within an internal sum</li> </ul>	pipe approved synthetic material or pipe "jacket") vation or pipe containment area
	<ul> <li>M Double-walled construction: dual material (outer</li> <li>G Synthetic liner or box/trench liner in piping excav</li> <li>P Internal Piping: contained within an internal sum dispenser</li> <li>A Aboveground – no contact with soil</li> <li>I Suction Piping System</li> </ul>	<ul> <li>pipe approved synthetic material or pipe "jacket")</li> <li>vation or pipe containment area</li> <li>p riser directly connected to tank and located beneath</li> <li>K Dispenser Sumps</li> <li>L Bulk Product System</li> </ul>
Piping:	<ul> <li>M Double-walled construction: dual material (outer</li> <li>G Synthetic liner or box/trench liner in piping excav</li> <li>P Internal Piping: contained within an internal sum dispenser</li> <li>A Aboveground – no contact with soil</li> </ul>	r pipe approved synthetic material or pipe "jacket") vation or pipe containment area or riser directly connected to tank and located beneath K Dispenser Sumps
Piping: Miscellaneous Attributes MONITORING	<ul> <li>M Double-walled construction: dual material (outer</li> <li>G Synthetic liner or box/trench liner in piping excav</li> <li>P Internal Piping: contained within an internal sum dispenser</li> <li>A Aboveground – no contact with soil</li> <li>I Suction Piping System</li> <li>J Pressurized Piping System</li> <li>W Piping over water</li> </ul>	<ul> <li>pipe approved synthetic material or pipe "jacket") vation or pipe containment area or pipe directly connected to tank and located beneath</li> <li>K Dispenser Sumps</li> <li>L Bulk Product System</li> <li>H Airport/Seaport Hydrant System</li> </ul>
Piping: Miscellaneous Attributes	<ul> <li>M Double-walled construction: dual material (outer</li> <li>G Synthetic liner or box/trench liner in piping excav</li> <li>P Internal Piping: contained within an internal sum dispenser</li> <li>A Aboveground – no contact with soil</li> <li>I Suction Piping System</li> <li>J Pressurized Piping System</li> <li>W Piping over water</li> <li>E Monitoring of UST synthetic liner</li> </ul>	<ul> <li>pipe approved synthetic material or pipe "jacket") vation or pipe containment area in priser directly connected to tank and located beneath</li> <li>K Dispenser Sumps</li> <li>L Bulk Product System</li> <li>H Airport/Seaport Hydrant System</li> <li>W Fiber-optics Technologies</li> </ul>
Piping: Miscellaneous Attributes MONITORING	<ul> <li>M Double-walled construction: dual material (outer</li> <li>G Synthetic liner or box/trench liner in piping excav</li> <li>P Internal Piping: contained within an internal sum dispenser</li> <li>A Aboveground – no contact with soil</li> <li>I Suction Piping System</li> <li>J Pressurized Piping System</li> <li>W Piping over water</li> <li>E Monitoring of UST synthetic liner</li> <li>Q Visual Inspection of AST Systems</li> </ul>	<ul> <li>pipe approved synthetic material or pipe "jacket") vation or pipe containment area or pipe directly connected to tank and located beneath</li> <li>K Dispenser Sumps</li> <li>L Bulk Product System</li> <li>H Airport/Seaport Hydrant System</li> </ul>
Piping: Miscellaneous Attributes MONITORING	<ul> <li>M Double-walled construction: dual material (outer</li> <li>G Synthetic liner or box/trench liner in piping excav</li> <li>P Internal Piping: contained within an internal sum dispenser</li> <li>A Aboveground – no contact with soil</li> <li>I Suction Piping System</li> <li>J Pressurized Piping System</li> <li>W Piping over water</li> <li>E Monitoring of UST synthetic liner</li> </ul>	<ul> <li>pipe approved synthetic material or pipe "jacket") vation or pipe containment area in priser directly connected to tank and located beneath</li> <li>K Dispenser Sumps</li> <li>L Bulk Product System</li> <li>H Airport/Seaport Hydrant System</li> <li>W Fiber-optics Technologies</li> </ul>
Piping: Miscellaneous Attributes MONITORING	<ul> <li>M Double-walled construction: dual material (outer</li> <li>G Synthetic liner or box/trench liner in piping excav</li> <li>P Internal Piping: contained within an internal sum dispenser</li> <li>A Aboveground – no contact with soil</li> <li>I Suction Piping System</li> <li>J Pressurized Piping System</li> <li>W Piping over water</li> <li>E Monitoring of UST synthetic liner</li> <li>Q Visual Inspection of AST Systems</li> <li>8 Manually Sampled Wells</li> <li>F Interstitial Space – Double-walled Tank</li> </ul>	<ul> <li>pipe approved synthetic material or pipe "jacket") vation or pipe containment area in priser directly connected to tank and located beneath</li> <li>K Dispenser Sumps</li> <li>L Bulk Product System</li> <li>H Airport/Seaport Hydrant System</li> <li>W Fiber-optics Technologies</li> </ul>
Piping: Miscellaneous Attributes MONITORING External Internal	<ul> <li>M Double-walled construction: dual material (outer</li> <li>G Synthetic liner or box/trench liner in piping excav</li> <li>P Internal Piping: contained within an internal sum dispenser</li> <li>A Aboveground – no contact with soil</li> <li>I Suction Piping System</li> <li>J Pressurized Piping System</li> <li>W Piping over water</li> <li>E Monitoring of UST synthetic liner</li> <li>Q Visual Inspection of AST Systems</li> <li>8 Manually Sampled Wells</li> <li>F Interstitial Space – Double-walled Tank</li> <li>R Interstitial Monitoring of AST Tank Bottom</li> </ul>	<ul> <li>pipe approved synthetic material or pipe "jacket") vation or pipe containment area in priser directly connected to tank and located beneath</li> <li>K Dispenser Sumps</li> <li>L Bulk Product System</li> <li>H Airport/Seaport Hydrant System</li> <li>W Fiber-optics Technologies</li> <li>Z Other DEP approved monitoring methods</li> </ul>
Piping: Miscellaneous Attributes MONITORING External	<ul> <li>M Double-walled construction: dual material (outer</li> <li>G Synthetic liner or box/trench liner in piping excav</li> <li>P Internal Piping: contained within an internal sum dispenser</li> <li>A Aboveground – no contact with soil</li> <li>I Suction Piping System</li> <li>J Pressurized Piping System</li> <li>J Pressurized Piping System</li> <li>W Piping over water</li> <li>E Monitoring of UST synthetic liner</li> <li>Q Visual Inspection of AST Systems</li> <li>8 Manually Sampled Wells</li> <li>F Interstitial Space – Double-walled Tank</li> <li>R Interstitial Monitoring of AST Tank Bottom</li> <li>G Electronic Line Leak Detector with Flow Shutoff</li> </ul>	<ul> <li>pipe approved synthetic material or pipe "jacket") vation or pipe containment area in priser directly connected to tank and located beneath</li> <li>K Dispenser Sumps</li> <li>L Bulk Product System</li> <li>H Airport/Seaport Hydrant System</li> <li>W Fiber-optics Technologies</li> <li>Z Other DEP approved monitoring methods</li> <li>K Interstitial Monitoring – Double-walled Piping</li> </ul>
Piping: Miscellaneous Attributes MONITORING External Internal	<ul> <li>M Double-walled construction: dual material (outer</li> <li>G Synthetic liner or box/trench liner in piping excav</li> <li>P Internal Piping: contained within an internal sum dispenser</li> <li>A Aboveground – no contact with soil</li> <li>I Suction Piping System</li> <li>J Pressurized Piping System</li> <li>W Piping over water</li> <li>E Monitoring of UST synthetic liner</li> <li>Q Visual Inspection of AST Systems</li> <li>8 Manually Sampled Wells</li> <li>F Interstitial Space – Double-walled Tank</li> <li>R Interstitial Monitoring of AST Tank Bottom</li> </ul>	<ul> <li>pipe approved synthetic material or pipe "jacket") vation or pipe containment area in priser directly connected to tank and located beneath</li> <li>K Dispenser Sumps</li> <li>L Bulk Product System</li> <li>H Airport/Seaport Hydrant System</li> <li>W Fiber-optics Technologies</li> <li>Z Other DEP approved monitoring methods</li> </ul>
Piping: Miscellaneous Attributes MONITORING External Internal Piping Monitoring	<ul> <li>M Double-walled construction: dual material (outer</li> <li>G Synthetic liner or box/trench liner in piping excave</li> <li>P Internal Piping: contained within an internal sum dispenser</li> <li>A Aboveground – no contact with soil</li> <li>I Suction Piping System</li> <li>J Pressurized Piping System</li> <li>W Piping over water</li> <li>E Monitoring of UST synthetic liner</li> <li>Q Visual Inspection of AST Systems</li> <li>8 Manually Sampled Wells</li> <li>F Interstitial Space – Double-walled Tank</li> <li>R Interstitial Monitoring of AST Tank Bottom</li> <li>G Electronic Line Leak Detector with Flow Shutoff</li> <li>H Mechanical Line Leak Detector</li> <li>J Monitoring of Piping Liner</li> </ul>	<ul> <li>k Dispenser Sumps</li> <li>k Dispenser Sumps</li> <li>k Bulk Product System</li> <li>k Airport/Seaport Hydrant System</li> <li>W Fiber-optics Technologies</li> <li>z Other DEP approved monitoring methods</li> <li>k Interstitial Monitoring – Double-walled Piping</li> <li>k Bulk Product Piping Pressure Test</li> <li>6 External Monitoring</li> </ul>
Piping: Miscellaneous Attributes MONITORING External Internal	<ul> <li>M Double-walled construction: dual material (outer</li> <li>G Synthetic liner or box/trench liner in piping excav</li> <li>P Internal Piping: contained within an internal sum dispenser</li> <li>A Aboveground – no contact with soil</li> <li>I Suction Piping System</li> <li>J Pressurized Piping System</li> <li>W Piping over water</li> <li>E Monitoring of UST synthetic liner</li> <li>Q Visual Inspection of AST Systems</li> <li>8 Manually Sampled Wells</li> <li>F Interstitial Space – Double-walled Tank</li> <li>R Interstitial Monitoring of AST Tank Bottom</li> <li>G Electronic Line Leak Detector with Flow Shutoff</li> <li>H Mechanical Line Leak Detector</li> </ul>	<ul> <li>Pipe approved synthetic material or pipe "jacket") vation or pipe containment area in priser directly connected to tank and located beneath</li> <li>K Dispenser Sumps <ol> <li>Bulk Product System</li> <li>Airport/Seaport Hydrant System</li> </ol> </li> <li>W Fiber-optics Technologies <ol> <li>Other DEP approved monitoring methods</li> </ol> </li> <li>K Interstitial Monitoring – Double-walled Piping <ol> <li>Bulk Product Piping Pressure Test</li> <li>External Monitoring</li> </ol> </li> <li>3 Electronic Monitoring of Piping Sumps</li> </ul>
Piping: Miscellaneous Attributes MONITORING External Internal Piping Monitoring	<ul> <li>M Double-walled construction: dual material (outer</li> <li>G Synthetic liner or box/trench liner in piping excave</li> <li>P Internal Piping: contained within an internal sum dispenser</li> <li>A Aboveground – no contact with soil</li> <li>I Suction Piping System</li> <li>J Pressurized Piping System</li> <li>W Piping over water</li> <li>E Monitoring of UST synthetic liner</li> <li>Q Visual Inspection of AST Systems</li> <li>8 Manually Sampled Wells</li> <li>F Interstitial Space – Double-walled Tank</li> <li>R Interstitial Monitoring of AST Tank Bottom</li> <li>G Electronic Line Leak Detector with Flow Shutoff</li> <li>H Mechanical Line Leak Detector</li> <li>J Monitoring of Piping Liner</li> <li>I Not Required – See Rule for Exemptions</li> </ul>	<ul> <li>k Dispenser Sumps</li> <li>k Dispenser Sumps</li> <li>k Bulk Product System</li> <li>k Airport/Seaport Hydrant System</li> <li>W Fiber-optics Technologies</li> <li>z Other DEP approved monitoring methods</li> <li>k Interstitial Monitoring – Double-walled Piping</li> <li>k Bulk Product Piping Pressure Test</li> <li>6 External Monitoring</li> </ul>

#### E. Certified Contractor and Certification

Record the name and the **Department of Business and Professional Regulation License Number** for the **Certified Contractor** whenever an underground storage tank has been installed or removed. Do not rely on the contractor to file this form. Storage Tank Registration Forms are required to be submitted by the storage tank system owner.

**Please Remember** - The Registration Form cannot be processed without the name and signature of the storage tank system owner and the date of the form submittal. Please print the name legibly in case a representative of the storage tank program should need to contact you.

Submit form to <a href="mailto:tankregistration@floridadep.gov">tankregistration@floridadep.gov</a>

If you have questions, please call a storage tank registration representative at (850) 245-8839 or email <u>tankregistration@floridadep.gov</u> for assistance. Thank you for your cooperation.



# **UNIVERSAL Solutions, Inc.**

Engineers, Scientists, Environmental Consultants 8339 Stone Run Court, Tampa, Flordia 33615 813-639-1241 www.usienvironmental.com

January 22, 2023

Sent via email: JTromer@northstar.com

c/o Florida Department of Environmental Protection 2600 Blair Stone Rd. Tallahassee, Florida 32399-2400

- Attn: Ms. Jessica Tromer Associate Scientist NorthStar Contracting Group, Inc. Petroleum Restoration Program Section Five jtromer@northstar.com
- Subject: Well Plugging & Abandonment Report Gator Food Store/Davis Oil Company 726/730 E. Main Street Immokalee, Collier County, FI FDEP Fac. ID# 11/8518121

Dear Ms. Tromer,

UNIVERSAL Solutions, Inc. (USI) is pleased to submit this Well Plugging and Abandonment Report. The report addresses the Site Rehabilitation and Closure Approval letter dated November 21, 2022. On January 7, 2023, MDM Services, Lakeland, Florida a Licensed Water Well Driller and Universal Solutions personnel mobilized to the subject facility in order to plug and abandon the existing monitor wells.

MDM obtained a well plugging permit from Collier county an proceeded to plug and abandon a total of ten (10) site monitor wells per Collier County and Water Management District Well Abandonment Guidelines. **Appendix A** includes a copy of the Permit and the Well Completion Reports.

Key documentation provided includes the following:

Appendices

Appendix A: Plugging Permit and Well Completion Reports



If you have any questions, Please call or email John McKeague at (813) 230-6422 or email <u>Jmckeague@usienvironmental.com</u>.

Respectfully Submitted,

John McKeague

Universal Solutions, Inc. John McKeague, P.G. Florida License No. 081

Cc: Donnie Davis, Davis Oil Company



UNIVERSAL SOLUTIONS, INC.

APPENDIX A

### COLLIER COUNTY BOARD OF COUNTY COMMISSIONERS

### PERMIT

PERMIT #:PRWL2022125780101PERMIT TYPE:Well PermitsDATE ISSUED:January 04, 2023BUILDING CODE IN EFFECT:FBC 7th Edition 2020 w/ 2022 sup2

JOB ADDRESS: 726 E Main ST, Immokalee FOLIO #: 116560007 JOB DESCRIPTION: Abandonment of (8) shallow wells 726 E Main ST, Immokalee

OWNER INFORMATION: DAVIS OIL COMPANY INC 726 E MAIN STREET IMMOKALEE, FL 34142

AREA OF WORK (SQFT):

<u>SETBACKS:</u> <u>FRONT: REAR: LEFT: RIGHT:</u>

FLOOD ZONE: SEWER: WATER:

CONTRACTOR INFORMATION: MDM SERVICES, INC. 1055 KATHLEEN RD LAKELAND, FL 33805 (863) 646-9130 Ext: Michael A. CERTIFICATE #: C26718

### **INSPECTION JOB CARD**

### To schedule inspections call 239-252-3726 or visit https://cvportal.colliercountyfl.gov/cityviewweb

SETBACK	S:										
FRONT:		REAR:		LEFT:		RIGHT:		SPECIAL:		FLOOD	FZ
										ZONE:	
INSPECT	ION			DUTCOME				COM	MENTS		
004 \\/al	I										
804 - Wel	I										
OPEN CO	NDITIONS	S									
Condition			ion Descrip	otion:							
							ndition on tl	he CityView	portal loca	ted at	
Inspection	Hold	https://	cvportal.col	liercountyf	.gov/cityvi	ewweb					

NOTE: If you are unable to schedule your inspection, please contact the inspection desk at 252-2400. NOISE ORDINANCE: Collier County Codes of Laws and Ordinances 54-92(f) Construction Sound. NOISE LIMITATIONS are in effect at all times. Work permitted, RESIDENTIAL Areas – 6:30 AM to 7:00 PM Monday thru Saturday; NON-RESIDENTIAL Areas (more than 500 feet from Residential Area) 6:00AM to 8:00PM Monday thru Saturday. No Work on Sundays or Holidays. RADIOS, LOUDSPEAKERS, ETC. – Must not disturb peace, quiet and comfort of neighboring inhabitants. FREE CABLE LOCATIONS – Call 48 Hours prior to digging/FPL 434-1222/UTS 1-800-542-0088/PalmerCATV 783-0638 and all other applicable utilities.

Per currently adopted building code ordinance, as it may be amended, all work must comply with all applicable laws, codes, ordinances, and any additional stipulations or conditions of this permit. This permit expires if work authorized by the permit is not commenced within six (6) months from the date of issuance of the permit. Additional fees for failing to obtain permits prior to the commencement of construction may be imposed. Permittee(s) further understands that any contractor that may be employed must be a licensed contractor and that the structure must not be used or occupied until a Certificate of Occupancy is issued.

NOTICE: PRIOR TO THE REMOVAL OF ASBESTOS PRODUCTS OR THE DEMOLITION OF A STRUCTURE, FEDERAL AND STATE LAWS REQUIRE THE PERMITTEE (EITHER THE OWNER OR CONTRACTOR) TO SUBMIT A NOTICE OF THE INTENDED WORK TO THE STATE DEPARTMENT OF ENVIRONMENTAL PROTECTION (DEP). FOR MORE INFORMATION, CONTACT DEP AT (239) 344-5600.

NOTICE: In addition to the conditions of this permit, there may be additional restrictions applicable to this property that may be found in the public records of this county, and there may be additional permits required from other governmental entities such as water management districts, state agencies, or federal agencies.

WARNING TO OWNER: YOUR FAILURE TO RECORD A NOTICE OF COMMENCEMENT MAY RESULT IN YOUR PAYING TWICE FOR IMPROVEMENTS TO YOUR PROPERTY. A NOTICE OF COMMENCEMENT MUST BE RECORDED AND POSTED ON THE JOB SITE BEFORE THE FIRST INSPECTION. IF YOU INTEND TO OBTAIN FINANCING, CONSULT WITH YOUR LENDER OR AN ATTORNEY BEFORE RECORDING YOUR NOTICE OF COMMENCEMENT.

### COLLIER COUNTY BOARD OF COUNTY COMMISSIONERS

### PERMIT

PERMIT #:PRWL2022125780201PERMIT TYPE:Well PermitsDATE ISSUED:January 04, 2023BUILDING CODE IN EFFECT:FBC 7th Edition 2020 w/ 2022 sup2

<u>JOB ADDRESS:</u> 726 E Main ST, Immokalee <u>FOLIO #:</u> 116560007 <u>JOB DESCRIPTION:</u> Abandonment of (2) deep monitoring wells 726 E Main ST, Immokalee

OWNER INFORMATION: DAVIS OIL COMPANY INC 726 E MAIN STREET IMMOKALEE, FL 34142

AREA OF WORK (SQFT):

<u>SETBACKS:</u> <u>FRONT: REAR: LEFT: RIGHT:</u>

FLOOD ZONE: SEWER: WATER:

CONTRACTOR INFORMATION: MDM SERVICES, INC. 1055 KATHLEEN RD LAKELAND, FL 33805 (863) 646-9130 Ext: Michael A. CERTIFICATE #: C26718

### **INSPECTION JOB CARD**

### To schedule inspections call 239-252-3726 or visit https://cvportal.colliercountyfl.gov/cityviewweb

SETBACK	S:										
FRONT:		REAR:		LEFT:		RIGHT:		SPECIAL:		FLOOD	FZ
										ZONE:	
INSPECT	ION			DUTCOME				COM	MENTS		
804 - Wel	I										
004 - 0061	1										
OPEN CO											
Condition	n Type:	Condit	ion Descrip	otion:							
			ipload the V				ndition on th	he CityView	portal loca	ited at	
Inspection	Hold	https://	cvportal.col	liercountyf	.gov/cityvi	ewweb					

NOTE: If you are unable to schedule your inspection, please contact the inspection desk at 252-2400. NOISE ORDINANCE: Collier County Codes of Laws and Ordinances 54-92(f) Construction Sound. NOISE LIMITATIONS are in effect at all times. Work permitted, RESIDENTIAL Areas – 6:30 AM to 7:00 PM Monday thru Saturday; NON-RESIDENTIAL Areas (more than 500 feet from Residential Area) 6:00AM to 8:00PM Monday thru Saturday. No Work on Sundays or Holidays. RADIOS, LOUDSPEAKERS, ETC. – Must not disturb peace, quiet and comfort of neighboring inhabitants. FREE CABLE LOCATIONS – Call 48 Hours prior to digging/FPL 434-1222/UTS 1-800-542-0088/PalmerCATV 783-0638 and all other applicable utilities.

Per currently adopted building code ordinance, as it may be amended, all work must comply with all applicable laws, codes, ordinances, and any additional stipulations or conditions of this permit. This permit expires if work authorized by the permit is not commenced within six (6) months from the date of issuance of the permit. Additional fees for failing to obtain permits prior to the commencement of construction may be imposed. Permittee(s) further understands that any contractor that may be employed must be a licensed contractor and that the structure must not be used or occupied until a Certificate of Occupancy is issued.

NOTICE: PRIOR TO THE REMOVAL OF ASBESTOS PRODUCTS OR THE DEMOLITION OF A STRUCTURE, FEDERAL AND STATE LAWS REQUIRE THE PERMITTEE (EITHER THE OWNER OR CONTRACTOR) TO SUBMIT A NOTICE OF THE INTENDED WORK TO THE STATE DEPARTMENT OF ENVIRONMENTAL PROTECTION (DEP). FOR MORE INFORMATION, CONTACT DEP AT (239) 344-5600.

NOTICE: In addition to the conditions of this permit, there may be additional restrictions applicable to this property that may be found in the public records of this county, and there may be additional permits required from other governmental entities such as water management districts, state agencies, or federal agencies.

WARNING TO OWNER: YOUR FAILURE TO RECORD A NOTICE OF COMMENCEMENT MAY RESULT IN YOUR PAYING TWICE FOR IMPROVEMENTS TO YOUR PROPERTY. A NOTICE OF COMMENCEMENT MUST BE RECORDED AND POSTED ON THE JOB SITE BEFORE THE FIRST INSPECTION. IF YOU INTEND TO OBTAIN FINANCING, CONSULT WITH YOUR LENDER OR AN ATTORNEY BEFORE RECORDING YOUR NOTICE OF COMMENCEMENT.

	STATE OF FLOR		IPLETION		Г		Date Star	np
THE STATE OF THE S	□Southwest □Northwest □St. Johns River □South Florida □Suwannee River □DEP ■Delegated Authority (	PLEASE, FILL OUT (*Denotes Requi (If Applicable) <u>Collier</u>	ired Fields W		e)		Official)Use	Only
						L		
	2022125780101 *CUP/WUF					_		
	vells constructed, repaired							
3.*Owner's Name Davi	s Oil Company		_ 4.*Comple	tion Date 01/	07/23 5	5. Florida Uniq	ue ID	
	mmokalee, FL 34142 ss, Road Name or Numbe							
7.*County Collier	*Sec	tion <u>3</u> Land G	Frant			*Township <u>47</u>	S *Range	<u>29 E</u>
8. Latitude		Longitude						
	GPSMap ConstructionRepai				NAD 27	NAD 83	WGS 84	
11.*Specify Intended Use Domestic Bottled Water Supply Public Water Supply Public Water Supply Class I Injection Class V Injection:F Remediation:Reco	e(s) of Well(s): bly y (Limited Use/DOH) y (Community or Non-Con Recharge Commercian overyAir Sparge	_Landscape Irrigation _Recreation Area Irriga nmunity/DEP) ial/Industrial Disposal _	ation - - - - - - - -	Agricultura Livestock Nursery In Commerc Golf Cours	rigation sial/Industrial se Irrigation	Test Earth- HVAC HVAC Drainage	Coupled Geothe	rmal
Other (Describe)	AugerCable Tool	- Dotony	Combinati	Two or Mo	Mathada)	lattar	d Sonic	
13.*Measured Static Wat 14.*Measuring Point (Des 15.*Casing Material:	Horizontal Drilling er Level 5 ft. M cribe) <u>TOC</u> Black SteelGal ft. Cased Depth <u>13.</u>	Hydraulic Point ( Measured Pumping Wat Which is IvanizedPVC	(Direct Push) Iter Level s_0.5_ft Stainle	)Othen ft. A Above_✓ ess Steel	r_PIUGGEC After _Below Lanc _Not Cased	D DY APPro Hours at d Surface *FlOther	GPMGPMYes	No
17.*Abandonment: From_0ftTo_1 FromftTo	✓         Other (Explain)         Plug           3.8         ft.         No. of Bags 2           ft.         No. of Bags           ft.         No. of Bags	gged by approved meth Seal Material (C Seal Material (C	hod heck One): heck One): heck One):_ heck One):	✓ Neat Cer Neat Cer Neat Cer Neat Cer	mentE mentE mentE mentE	Bentonite Bentonite Bentonite Bentonite Bentonite	Other	
Diain. From_ Diain. From_	ft. Toft. N			(Check One): (Check One):	Neat Cen Neat Cen		coniteOther_ coniteOther_	
19.*Primary Casing Diar Diain. From_ Diain. From_ Diain. From_ Diain. From_ Diain. From_	ft. Toft. M ft. Toft. M ft. Toft. M ft. Toft. M	No. of Bags S No. of Bags S No. of Bags S	Seal Material ( Seal Material ( Seal Material (	(Check One):	Neat Cen Neat Cen Neat Cen Neat Cen Neat Cen	nentBent nentBent nentBent	toniteOther_ toniteOther_ toniteOther_ toniteOther_ toniteOther_	
20.*Liner Casing Diamet Diain. From_ Diain. From_ Diain. From_	ft. Toft. M ft. Toft. M	No. of Bags S	Seal Material (	(Check One):_ (Check One):_ (Check One):_	Neat Cer Neat Cer Neat Cer	mentBent	toniteOther_ toniteOther_ toniteOther_	
21.*Telescope Casing Di Diain. From Diain. From Diain. From	ft. Toft. 1 ft. Toft. 1	No. of Bags S	Seal Material	(Check One):_ (Check One):_ (Check One):_	Neat Cer Neat Cer Neat Cer	mentBent	toniteOther_ toniteOther_ toniteOther_	
22. Pump Type (If Known Centrifugal	n): Jet Submersibl	le Turbine		nical Analysis (	•	,	Chlorido	
Horsepowerft. 24. Water Well Contracto	Pump Capacity (GPM Intake Depthf	1)		ppm _Laboratory Tes	Sulfate st	ppm _Field Test Kit	Chloride	ppm
*Contractor Name Micha	ael Alexander	*License Number	9248	E-mail /	Address mik	e.alexander@	mdmservices.co	m
*Contractor's Signature	and the information provid	led in this report is accurate an	*Drille	er's Name (Prin	nt or Type) <u>N</u>	larcus William	IS	

SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT

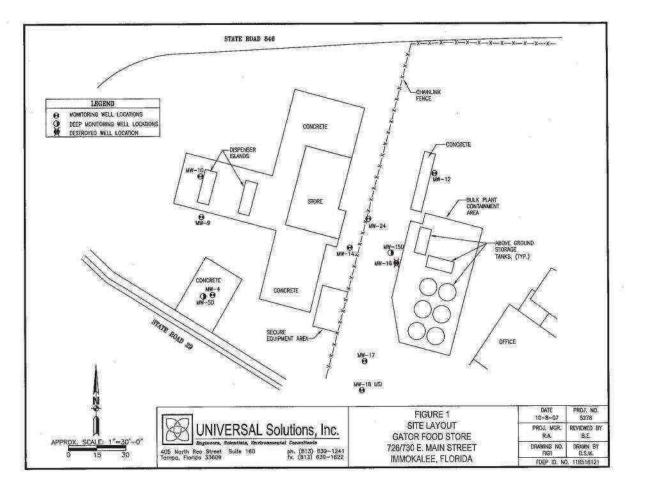
2379 BROAD STREET, BROOKSVILLE, FL 34604-6899 PHONE: (352) 796-7211 or (800) 423-1476 WWW.SWFWMD.STATE.FL.US

#### ST. JOHNS RIVER WATER MANAGEMENT DISTRICT

4049 REID STREET, PALATKA, FL 32178-1429 PHONE: (386) 329-4500 WWW.SJRWMD.COM

### NORTHWEST FLORIDA WATER MANAGEMENT DISTRICT

152 WATER MANAGEMENT DR., HAVANA, FL 32333-4712 (U.S. Highway 90, 10 miles west of Tallahassee) PHONE: (850) 539-5999 WWW.NWFWMD.STATE.FL.US


#### SOUTH FLORIDA WATER MANAGEMENT DISTRICT P.O. BOX 24680 3301 GUN CLUB ROAD

WEST PALM BEACH, FL 33416-4680 PHONE: (561) 686-8800 WWW.SFWMD.GOV

#### SUWANNEE RIVER WATER MANAGEMENT DISTRICT 9225 CR 49

LIVE OAK, FL 32060 PHONE: (386) 362-1001 or (800) 226-1066 (Florida only) WWW.MYSUWANNEERIVER.COM

*DRILL CUT	TINGS	LOG (Exami	ne cutt	ings every 20 ft. or at formation	changes. Note cavities and depth	n to producing zone. Grain Size: F=Fine,
M=Medium, a				0	с :	
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	То	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	То	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	То	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	То	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	То	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	То	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	То	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
From	ft.	То	ft.	Color	Grain Size (F, M, C)	Material
0 1 1	Soo otto	abad aita ma	n for u	well leastions (MIN/ 4 MIN/ 0 MI)	V 10 NAVA/ 12 NAVA/ 14 NAVA/ 17 NA	W 24 and MW 191151)
Comments:	See atta	iched site ma	ap for v	vell locations. (MW-4, MW-9, MV	V-10, MW-12, MW-14, MW-17, M	W-24, and MW-18USI)
Comments:	See atta	iched site ma	ap for v	vell locations. (MW-4, MW-9, MV	V-10, MW-12, MW-14, MW-17, M	W-24, and MW-18USI)
Comments:	See atta	iched site ma	ap for v	vell locations. (MW-4, MW-9, MV	V-10, MW-12, MW-14, MW-17, M	W-24, and MW-18USI)
Comments: <u>{</u>	See atta	iched site ma	ap for v	vell locations. (MW-4, MW-9, MV	V-10, MW-12, MW-14, MW-17, M	W-24, and MW-18USI)
Comments: <u>{</u>	See atta	iched site ma	ap for v	vell locations. (MW-4, MW-9, MV	V-10, MW-12, MW-14, MW-17, M	W-24, and MW-18USI)
Comments: <u>_</u>	See atta	iched site ma	ap for v			W-24, and MW-18USI)
Comments: <u>{</u>	See atta	iched site ma	ap for v		v-10, MW-12, MW-14, MW-17, M ap of Well Location	W-24, and MW-18USI)
Comments: <u>{</u>	See atta	iched site ma	ap for v			
Comments: <u>{</u>	See atta	iched site ma	ap for v			W-24, and MW-18USI)
Comments: <u>{</u>	See atta	iched site ma	ap for v			
Comments: <u>S</u>	See atta	iched site ma	ap for v			
Comments: <u>S</u>	See atta	uched site ma	ap for v			
Comments: <u>S</u>	See atta	iched site ma	ap for v			
Comments: <u>S</u>	See atta	iched site ma	ap for v			
Comments: <u>S</u>	See atta	iched site ma	ap for v			
Comments: <u>S</u>	See atta	iched site ma	ap for v			
Comments: <u>S</u>	See atta	iched site ma	ap for v			
Comments: <u>s</u>	See atta	iched site ma	ap for v			
Comments: <u>S</u>	See atta	iched site ma	ap for v			
Comments: <u>S</u>	See atta	uched site ma	ap for v			
Comments: <u>S</u>	See atta	uched site ma	ap for v			
Comments: <u>S</u>	See atta	iched site ma	ap for v			
Comments: <u>S</u>	See atta	iched site ma	ap for v			
Comments: <u>S</u>	See atta	iched site ma	ap for v			
Comments: <u>S</u>	See atta	iched site ma	ap for v			
Comments: <u>s</u>	See atta	iched site ma	ap for v			
Comments: <u>s</u>	See atta	iched site ma	ap for v			
Comments: <u>s</u>	See atta	iched site ma	ap for v			



	STATE OF FLOR		IPLETION		г		Date Sta	imp
THE STATES	□ Southwest □ Northwest □ St. Johns River □ South Florida □ Suwannee River □ DEP ■ Delegated Authority (	PLEASE, FILL OUT (*Denotes Requ (If Applicable) <u>Collie</u>	ired Fields W		e)		<mark>Official</mark> Use	e Only
						L		
	2022125780201 *CUP/WUF					_		
	wells constructed, repaired		-					
3.*Owner's Name Davi	s Oil Company		_ 4.*Comple	tion Date 01/	07/23	5. Florida Uniq	ue ID	
	mmokalee, FL 34142 ss, Road Name or Number							
7.*County Collier	*Sec	tion <u>3</u> Land G	Grant			*Township <u>47</u>	S *Range	<u>29 E</u>
8. Latitude		Longitude						
	GPSMap _				_NAD 27	NAD 83	WGS 84	ŀ
11.*Specify Intended Use Domestic Bottled Water Supply Public Water Supply Class I Injection Class V Injection:F	bly	_Landscape Irrigation _Recreation Area Irrig nmunity/DEP) al/Industrial Disposal _	- gation - - - - - - - -	Agricultura Livestock Nursery Ir Commerc Golf Cour	rigation cial/Industrial se Irrigation	Monito Test Earth- HVAC HVAC _Drainage	Coupled Geothe Supply	ərmal
Other (Describe)	AugerCable Tool					1-11-1		
13.*Measured Static Wat 14.*Measuring Point (Des 15.*Casing Material:	Horizontal Drilling er Level <u>15</u> ft. M cribe) <u>TOC</u> Black SteelGal 9ft. Cased Depth <u>23.3</u>	Hydraulic Point Measured Pumping Wa Whichi: Ivanized _✔PVC	(Direct Push) ater Level s 0.5 ft Stainle	) _ <b>√</b> Othe ft. / Above_ ✓ ess Steel	r <b>Plugge</b> After _Below Lan _Not Cased	d by appro Hours at dSurface *Fl Other_	GPMGPMYes	od sNo
17.*Abandonment: From_0ft. To_20 Fromft. To	✓         Other (Explain)         Plug           8.9         ft.         No. of Bags         4           ft.         No. of Bags         6           ft.         No. of Bags         6	gged by approved metl Seal Material (C Seal Material (C	hod Check One): Check One):_ Check One):_ Check One):_	Neat Cer Neat Cer Neat Cer Neat Cer Neat Cer	ment ment ment ment	Bentonite Bentonite Bentonite Bentonite Bentonite	Other	
Diain. From_ Diain. From_	ft. Toft. N			(Check One):_ (Check One):_	Neat Cer		coniteOther_ coniteOther_	
19.*Primary Casing Diam Diain. From_ Diain. From_ Diain. From_ Diain. From_ Diain. From_	ft. Toft. N ft. Toft. N ft. Toft. N ft. Toft. N	No. of Bags S No. of Bags S No. of Bags S	Seal Material (	Check One): (Check One):_	Neat Cer Neat Cer Neat Cer Neat Cer Neat Cer Neat Cer	mentBent mentBent mentBent	toniteOther toniteOther toniteOther toniteOther toniteOther	
20.*Liner Casing Diamet Diain. From_ Diain. From_ Diain. From_	ft. Toft. N ft. Toft. N	No. of Bags S	Seal Material (	(Check One):_ (Check One):_ (Check One):_	Neat Ce Neat Ce Neat Ce	mentBent	toniteOther toniteOther toniteOther	
21.*Telescope Casing Di Diain. From Diain. From Diain. From	ft. Toft. M ft. Toft. M	No. of Bags S	Seal Material	(Check One):_ (Check One):_ (Check One):_	Neat Ce Neat Ce Neat Ce	mentBent	toniteOther toniteOther toniteOther	
22. Pump Type (If Known Centrifugal	n): Jet Submersibl	le Turbine		nical Analysis (	•	,	Oblasida	
Horsepower Pump Depthft. 24. Water Well Contracto	Pump Capacity (GPM Intake Depthft	l)		ppm _Laboratory Tes	Sulfate st	ppm Field Test Kit	Chloride	ppm
*Contractor Name Micha	ael Alexander	*License Number _	9248	E-mail	Address mik	e.alexander@	mdmservices.co	om
*Contractor's Signature	and the information provide	led in this report is accurate ar	*Drille	er's Name (Prir	nt or Type) <u>N</u>	/larcus William	IS	

SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT

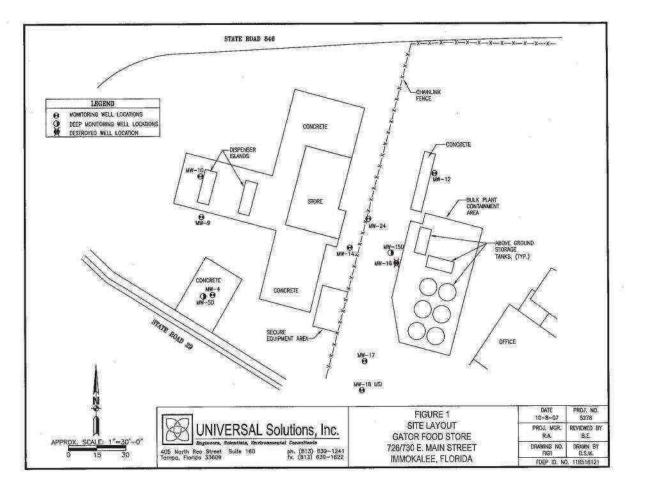
2379 BROAD STREET, BROOKSVILLE, FL 34604-6899 PHONE: (352) 796-7211 or (800) 423-1476 WWW.SWFWMD.STATE.FL.US

#### ST. JOHNS RIVER WATER MANAGEMENT DISTRICT

4049 REID STREET, PALATKA, FL 32178-1429 PHONE: (386) 329-4500 WWW.SJRWMD.COM

### NORTHWEST FLORIDA WATER MANAGEMENT DISTRICT

152 WATER MANAGEMENT DR., HAVANA, FL 32333-4712 (U.S. Highway 90, 10 miles west of Tallahassee) PHONE: (850) 539-5999 WWW.NWFWMD.STATE.FL.US


#### SOUTH FLORIDA WATER MANAGEMENT DISTRICT P.O. BOX 24680 3301 GUN CLUB ROAD

WEST PALM BEACH, FL 33416-4680 PHONE: (561) 686-8800 WWW.SFWMD.GOV

#### SUWANNEE RIVER WATER MANAGEMENT DISTRICT 9225 CR 49

LIVE OAK, FL 32060 PHONE: (386) 362-1001 or (800) 226-1066 (Florida only) WWW.MYSUWANNEERIVER.COM

*DRILL CU	TTINGS LO	<b>OG</b> (Examine	e cutt	ings every 20 ft. or at formation	changes. Note cavities and depth	n to producing zone. Grain Size: F=Fine,
M=Medium,						
From		To	_ft.	Color	Grain Size (F, M, C)	Material
From		To	_ft.	Color	Grain Size (F, M, C)	Material
From		То	_ft.	Color	Grain Size (F, M, C)	Material
From		To	_ft.	Color	Grain Size (F, M, C)	Material
From		To	_ft.	Color	Grain Size (F, M, C)	Material
From		To	_ft.	Color	Grain Size (F, M, C)	Material
From		To	_ft.	Color	Grain Size (F, M, C)	Material
From		To	_ft.	Color	Grain Size (F, M, C)	Material
From		То	_ft.	Color	Grain Size (F, M, C)	Material
From		To	_ft.	Color	Grain Size (F, M, C)	Material
From		To	_ft.	Color	Grain Size (F, M, C)	Material
From		To	_ft.	Color	Grain Size (F, M, C)	Material
From		То	_ft.	Color	Grain Size (F, M, C)	Material
From		То	_ft.	Color	Grain Size (F, M, C)	Material
From		То	_ft.	Color	Grain Size (F, M, C)	Material
From		To	_ft.	Color	Grain Size (F, M, C)	Material
From		То	_ft.	Color	Grain Size (F, M, C)	Material
From		To	_ft.	Color	Grain Size (F, M, C)	Material
From		То	_ft.	Color	Grain Size (F, M, C)	Material
From		То	_ft.	Color	Grain Size (F, M, C)	Material
From		То	_ft.	Color	Grain Size (F, M, C)	Material
From		То	_ft.	Color	Grain Size (F, M, C)	Material
From		То	_ft.	Color	Grain Size (F, M, C)	Material
From		То	_ft.	Color	Grain Size (F, M, C)	Material
From		То	_ft.	Color	Grain Size (F, M, C)	Material
From	ft	То	_ft.	Color	Grain Size (F, M, C)	Material
Comments:	See attach	hed site map	for w	vell locations. (MW-5D and MW-	15D)	
Comments:	See attack	hed site map	for w	vell locations. (MW-5D and MW-	15D)	
Comments:	See attack	hed site map	for w		15D)	
Comments:	See attack	hed site map	for w			



# Site 31 – Collier County - Immokalee Airport Site



### FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

South District Office 2295 Victoria Avenue, Suite 364 Fort Myers, Florida 33901-3881 Ron DeSantis Governor

Jeanette Nuñez Lt. Governor

Shawn Hamilton Secretary

Sent via email to: sonja.stephenson@colliercountyfl.gov

Date: 10/05/2022

Sonja Stephenson 3335 Tamiami Trail Naples, FL 34112

RE: Authorization for Disaster Debris Management Sites (DDMS) - Ian

Dear Sonja Stephenson,

In accordance with the Emergency Final Order OGC No. 22-2602 (the Order), which was executed on 09/24/2022, the Department may issue field authorizations for disaster debris management sites (DDMS) to be used for temporary storage and processing of disaster debris. Disaster debris includes hurricane/storm-generated debris and all other types of disaster debris. The Order also gives the Department authority to include specific conditions in the field authorizations for the operation and closure of a DDMS, which may delineate a required closure date that extends beyond the expiration of the Order. A copy of this Order may be obtained from the DEP website <a href="http://www.dep.state.fl.us/mainpage/em/info.htm">http://www.dep.state.fl.us/mainpage/em/info.htm</a>

The Department has evaluated your request for a DDMS at the following location:

WACS ID: 98127 Collier County - Immokalee Airport Site 199 Airport Road (700 Cr 846 East), Immokalee Lat 26:25:9 / Long 81:24:32 Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed Debris

The use of this DDMS is authorized subject to the following conditions, in addition to the requirements of the Order and Florida Statutes 403.7071:

- 1. The Department must be notified when the site is opened and begins accepting debris, and when the site is closed and all debris has been removed;
- 2. Standing water must not be allowed to accumulate in or within 50 feet of areas used to store or process disaster debris;
- 3. Access must be controlled to prevent unauthorized dumping and scavenging;
- 4. A DDMS must have spotters to correctly identify and segregate waste types for appropriate management;
- 5. Once the site is open, a spotter must be located in the area where waste is being deposited in order to spot and remove prohibited waste items;
- 6. The DDMS is limited to managing the type(s) of debris listed above; any putrescible waste received at the DDMS must be removed from the site within 48 hours; all other types of prohibited waste should be managed in

accordance with the guidance document (see link below);

7. Unless otherwise approved by the Department in response to a written request from you, the DDMS must cease operation, and all disaster debris must be removed from the site by 11/21/2022

The Department has also prepared a guidance document on the establishment, operation and closure of a DDMS for disaster debris. This guidance includes recommended practices, which you are expected to follow as much as practicable, as well as additional requirements from the Order. A copy of this guidance document is available on the DEP website at <a href="https://floridadep.gov/waste/permitting-compliance-assistance/documents/guidance-establishment-operation-and-closure">https://floridadep.gov/waste/permitting-compliance-assistance/documents/guidance-establishment-operation-and-closure</a>. This guidance is not a substitute for federal requirements and guidance, including those from the Federal Emergency Management Agency (FEMA).

If you have any questions or comments on this authorization letter, or if you require additional time to operate your DDMS, please feel free to contact Renee Kwiat by E-mail at renee.kwiat@floridadep.gov or by phone at (239) 344-5673. In order to provide better service to you, the Department is using electronic documents as much as possible. Please provide your E-mail address when replying.

10/05/2022

Sincerely,

Ryan Snyder South District Date

RS/rk

Cc: renee.kwiat@dep.state.fl.us, chad.fetrow@floridadep.gov, darryn.gipson@em.myflorida.com, kelly.chase@dos.myflorida.com, renee.kwiat@floridadep.gov

This letter generated by kwiat_r.



### FLORIDA DEPARTMENT OF Environmental Protection

Bob Martinez Center 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Ron DeSantis Governor

Jeanette Nuñez Lt. Governor

Shawn Hamilton Secretary

Sent via email to: sonja.stephenson@colliercountyfl.gov

Date: May 17, 2023

SONJA STEPHENSON 3335 TAMIAMI TRAIL SUITE 101 NAPLES FL 34112

RE: 2023 - Pre-Authorization for Disaster Debris Management Sites (DDMS)

Dear SONJA STEPHENSON

This is to notify you that on May 17, 2023, the Department of Environmental Protection (the Department) received your request for pre-authorization of a disaster debris management site(s) (DDMS) for 2023. Disaster debris includes hurricane/storm-generated debris and all other types of disaster debris.

The Department has evaluated your request for a DDMS at the following location(s):

Site Name: COLLIER COUNTY - IMMOKALEE AIRPORT SITE-98127 Site Address: 199 AIRPORT ROAD (700 CR 846 EAST) Immokalee, FL, 34142 Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed On-Site Contact: Sonja Stephenson (239) 252-8073, sonja.stephenson@colliercountyfl.gov DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov Site Name: IMMOKALEE SLF AND TRANSFER STATION (STOCKADE)-73114 Site Address: 700 STOCKADE RD @ CR846 Immokalee, FL, 34142 Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed On-Site Contact: Sonja Stephenson (239) 252-8073, sonja.stephenson@colliercountyfl.gov DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: NAA ESA SITE NO. 1-100582
Site Address: 160 AVIATION DRIVE-GATE 2W
Naples, FL, 34104
Waste Planned for Management: Yard Trash, Mixed
On-Site Contact: Sonja Stephenson
(239) 252-8073, sonja.stephenson@colliercountyfl.gov
DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: CARNESTOWN TRANSFER STATION-73088
Site Address: 31201 TAMIAMI TRAIL EAST Naples, FL, 34114
Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed On-Site Contact: Sonja Stephenson (239) 252-8073, sonja.stephenson@colliercountyfl.gov
DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: COLLIER COUNTY - MANATEE PARK SITE-97990
Site Address: 1890 ROOST RD.
Collier County, FL, 34114
Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed
On-Site Contact: Sonja Stephenson
(239) 252-8073, sonja.stephenson@colliercountyfl.gov
DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: CCPS MANATEE MIDDLE-98132 Site Address: 1920 MANATEE ROAD Naples, FL, 34114 Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed On-Site Contact: Sonja Stephenson (239) 252-8073, sonja.stephenson@colliercountyfl.gov DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: NAA ESA SITE NO 2-100583
Site Address: 160 AVIATION DRIVE-SW NORTH ROAD
Naples, FL, 34104
Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed
On-Site Contact: Sonja Stephenson
(239) 252-8073, sonja.stephenson@colliercountyfl.gov
DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: COLLIER COUNTY - CCWSD-99137
Site Address: 825 39TH AVE NE
Naples, FL, 34120
Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed
On-Site Contact: Sonja Stephenson
(239) 252-8073, sonja.stephenson@colliercountyfl.gov
DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: NAA ESA SITE NO. 3-100584 Site Address: WEST OF TERMINAL DRIVE 160 AVIATION DRIVE Naples, FL, 34104 Waste Planned for Management: Yard Trash, Mixed On-Site Contact: Sonja Stephenson (239) 252-8073, sonja.stephenson@colliercountyfl.gov DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: MARCO ISLAND RECYCLING DROP-OFF (FKA MARCO ISLAND TRANSFER)-73044 Site Address: 990 CHALMER DR Marco Island, FL, 34145 Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed On-Site Contact: Sonja Stephenson (239) 252-8073, sonja.stephenson@colliercountyfl.gov DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: COLLIER COUNTY - 13968 VANDERBILT DR-104835 Site Address: 13968 VANDERBILT DR Naples, FL, 34110 Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed On-Site Contact: Sonja Stephenson (239) 252-8073, sonja.stephenson@colliercountyfl.gov DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: NAPLES AIRPORT RECYCLING DROP-OFF (FKA NAPLES TRANSFER)-73105 Site Address: 2640 CORPORATE FLIGHT DR Naples, FL, 34104 Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed On-Site Contact: Sonja Stephenson (239) 252-8073, sonja.stephenson@colliercountyfl.gov DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: COLLIER COUNTY - SCHOOL BOARD SITE-97991
Site Address: 1010 18TH ST SE
Naples, FL, 34117
Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed
On-Site Contact: Sonja Stephenson
(239) 252-8073, sonja.stephenson@colliercountyfl.gov
DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: SCHOOL DISTRICT - PARKLANDS-107476 Site Address: LOGAN BLVD NORTH - PARKLANDS COLLIER COUNTY FOLIO NUMBER 66035000967 Naples, FL, 34119 Waste Planned for Management: Mixed On-Site Contact: Sonja Stephenson (239) 252-8073, sonja.stephenson@colliercountyfl.gov DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: NAPLES AIRPOT AUTHORITY #8-106196
Site Address: WEST OF PATROIT WAY
Naples, FL, 34112
Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed
On-Site Contact: Sonja Stephenson
(239) 252-8073, sonja.stephenson@colliercountyfl.gov
DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: COLLIER COUNTY SCHOOL SITE-SCHOOL BOARD ELEMENTARY L-107080
Site Address: 2400 MOULDER DR
Naples, FL, 34120
Waste Planned for Management: Yard Trash
On-Site Contact: Sonja Stephenson
(239) 252-8073, sonja.stephenson@colliercountyfl.gov
DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: COLLIER COUNTY-CAMP KEAIS-107092 Site Address: 6875 ROCK SPRINGS RD Immokalee, FL, 34142 Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed
On-Site Contact: Sonja Stephenson
(239) 252-8073, sonja.stephenson@colliercountyfl.gov
DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: NAPLES SANITARY LANDFILL-73046
Site Address: 3750 WHITE LAKE BLVD.
Naples, FL, 34117
Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed
On-Site Contact: Sonja Stephenson
(239) 252-8073, sonja.stephenson@colliercountyfl.gov
DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: CCWSD RESOURCE RECOVERY PARK-99069
Site Address: 3730 WHITE LAKE BLVD
Naples, FL, 34120
Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed
On-Site Contact: Sonja Stephenson
(239) 252-8073, sonja.stephenson@colliercountyfl.gov
DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: NAA ESA SITE NO. 4-100585 Site Address: EAST OF TERMINAL ROAD 160 AVIATION DRIVE Naples, FL, 34104 Waste Planned for Management: Mixed On-Site Contact: Sonja Stephenson (239) 252-8073, sonja.stephenson@colliercountyfl.gov DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: COLLIER COUNTY - COLLIER FAIRGROUNDS SITE-98134 Site Address: 751 39 AVENUE NE Naples, FL, 34120 Waste Planned for Management: Construction & Demolition Debris, Yard Trash, Mixed On-Site Contact: Sonja Stephenson (239) 252-8073, sonja.stephenson@colliercountyfl.gov DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Site Name: NAA ESA SITE NO. 5-100586
Site Address: ENTERPRISE AVE & WEST OF CORPORATE FLIGHT DRIVE 160 AVIATION DRIVE Naples, FL, 34104
Waste Planned for Management: Yard Trash
On-Site Contact: Sonja Stephenson
(239) 252-8073, sonja.stephenson@colliercountyfl.gov
DEP/Local Program Contact: Renee Kwiat, (239)344-5673, renee.kwiat@floridadep.gov

Unless you receive a subsequent notification from the Department concerning the status of these sites, you may consider them pre-authorized as disaster debris management sites.

In the event of a major storm event or other disaster which results in the Department issuing an Emergency Final Order (the Order) for your county, you may begin using a temporary DDMS as necessary, while also requesting issuance of a field authorization from the Department. Once activated, a DDMS is subject to the following conditions, in addition to the requirements of the Order and Florida Statute 403.7071:

# 1) The Department must be notified when the site is opened and begins accepting debris, and when the site is closed and all debris has been removed;

2) Standing water must not be allowed to accumulate in or within 50 feet of areas used to store or process disaster debris;

3) Access must be controlled to prevent unauthorized dumping and scavenging;

4) A DDMS must have spotters to correctly identify and segregate waste types for appropriate management;

5) Once the site is open, a spotter must be located in the area where the waste is being deposited in order to spot and remove prohibited waste items;

6) A DDMS is limited to managing the waste identified above for each site; any putrescible waste received at the DDMS must be removed within 48 hours, and all other types of prohibited waste should be managed in accordance with the guidance document (see link below);

7) Unless otherwise approved by the Department in response to a written request from you, the DDMS must cease operation and all disaster debris must be removed from the sites on or before the expiration date of an Order that has been executed by the Department, unless it is modified or extended by further authorization.

Failure to comply with the conditions of the field authorization, or failure to adequately close a site by the required closure date, may result in enforcement action by the Department.

The Department has also prepared a guidance document on the establishment, operation, and closure of a DDMS for disaster debris. This guidance document includes recommended practices, which you are expected to follow as much as practicable, as well as additional requirements from the Order. A copy of this guidance document is available on the DEP website

https://floridadep.gov/waste/permitting-compliance-assistance/documents/guidance-establishment-operation-and-closure/permitting-compliance-assistance/documents/guidance-establishment-operation-and-closure/permitting-compliance-assistance/documents/guidance-establishment-operation-and-closure/permitting-compliance-assistance/documents/guidance-establishment-operation-and-closure/permitting-compliance-assistance/documents/guidance-establishment-operation-and-closure/permitting-compliance-assistance/documents/guidance-establishment-operation-and-closure/permitting-compliance-assistance/documents/guidance-establishment-operation-and-closure/permitting-compliance-assistance/documents/guidance-establishment-operation-and-closure/permitting-compliance-assistance/documents/guidance-establishment-operation-and-closure/permitting-compliance-assistance/documents/guidance-establishment-operation-and-closure/permitting-compliance-assistance/documents/guidance-establishment-operation-and-closure/permitting-compliance-assistance/documents/guidance-establishment-operation-and-closure/permitting-compliance-assistance/documents/guidance-establishment-operation-and-closure/permitting-compliance-assistance/documents/guidance-establishment-operation-and-closure/permitting-compliance-assistance/documents/guidance-establishment-operation-and-closure/permitting-compliance-assistance/documents/guidance-establishment-operation-and-closure/permitting-compliance-assistance/documents/guidance-establishment-operation-and-closure/permitting-compliance-assistance/documents/guidance-establishment-operation-and-closure/permitting-compliance-assistance/documents/guidance-assistance/documents/guidance-assistance/documents/guidance-assistance/documents/guidance-assistance/documents/guidance-assistance/documents/guidance-assistance/documents/guidance-assistance/documents/guidance-assistance/documents/guidance-assistance/documents/guidance-assistance/documents/guidance-assistance/documents/guidance-assistance/documents/guidance-assistance/document

This guidance is not a substitute for federal requirements and guidance, including those from the Federal Emergency Management Agency (FEMA).

# Site 34 – Crop Production Services, Inc.



November 20, 2020

Jimmy Jara Jimmy.Jara@cpsagu.com.com

RE: In-Compliance Letter Crop Production Services 116 Jerome Dr Immokalee, FL 33934 DEP Facility # 9602496 Collier County – Storage Tanks

Dear Mr. Jara:

A storage tank inspection and file review were conducted at the above noted facility on or about **November 19, 2020**, by the Collier County Solid & Hazardous Waste Management Division on behalf of the Florida Department of Environmental Protection. Based on the information provided during and following the inspection, the facility was determined to be in compliance with the Department's storage tank rules and regulations. A copy of the inspection report is attached for your records.

The Department appreciates your efforts to maintain this facility in compliance with state and federal rules. Should you have any questions please contact Nereida Hernandez at (239) 252-8475 or by e-mail at <u>Nereida.Hernandez@CollierCountyFL.gov</u>.

Sincerely, Nereida Hernandez Environmental Specialist Collier County Public Utilities Department Solid and Hazardous Waste Management Division

Enclosure: Inspection Report





Florida Department of Environmental Protection Twin Towers Office Bldg. 2600 Blair Stone Road, Tallahassee, Florida, 32399-2400 Division of Waste Management Petroleum Storage Systems Storage Tank Facility Routine Compliance Site Inspection Report

### **Facility Information:**

Facility ID:9602496County: COLLIERFacility Type:M - AgriculturalFacility Name:CROP PRODUCTION SERVICES-IMMOKALEE116 JEROME DRIMMOKALEE, FL 33934Latitude:26° 25' 11.1722''Longitude:81° 24' 43.5082''LL Method:DPHO

Inspection Date:11/19/2020

# of inspected ASTs: 2 USTs: 0 Mineral Acid Tanks: 0

### **Inspection Result:**

Result: In Compliance

### Signatures:

TKCOPC - COLLIER COUNTY SOLID & HAZ WASTE MGMT DEPT (239) 207-0920

### Storage Tank Program Office and Phone Number

Nereida Hernandez

**Inspector Name** 

1. Idud

Jimmy Jara

**Representative Name** 

**Representative Signature** 

No Signature

Inspector Signature Principal Inspector COLLIER COUNTY SOLID & HAZ WASTE MGMT DEPT

### CROP PRODUCTION SERVICES-IMMOKALEE

Owners of UST facilities are reminded that the Federal Energy Policy Act of 2005 and 40 CFR 280 Subpart J requires Operator Training at all facilities by October 13, 2018. For further information please visit: https://floridadep.gov/waste/permitting-compliance-assistance/content/underground-storage-tank-operator-training

### **Financial Responsibility:**

Financial Responsibility:	EXEMPT-NOT REQUIRED	1	
Insurance Carrier:			
Effective Date:	05/14/2018	Expiration Date:	05/14/2023

### **Reviewed Records**

Record Category	Record type	From Date	To Date	Reviewed Record Comment
Two Years	Monthly Maint. Visual Examinations and Results	05/07/2018	11/16/2020	Weekly

### Areas of Concern:

Туре:	Area of Concern
Rule:	62-762.501(1)(f)
Violation Text:	Exterior portions of tanks and integral piping not protected from external corrosion, deterioration or degradation for shop fabricated tank systems.
Explanation:	Minor corrosion on piing
Corrective Action:	Corrosion to metal components must be maintain by periodic maintenance.
Violation Photos	
Added Date 11/20/2	2020

### Corrosion on pipng



### **Inspection Comments**

11/20/2020

Compliance inspection scheduled/outreach by e-mail on October 28, 2020.

No open violation or discharge found at time of the inspection.

On November 19, 2020, Nereida Hernandez from Collier County met with Mr. Jimmy Jara to conduct the Compliance Inspection.

This facility consists of two (2) registered/regulated in service aboveground storage tanks (ASTs).

Tank #1 – 10,000 gallons (Citrus oil mixed with insectide)

Tank #2 – 10,000 gallons (Citrus oil mixed with insectide)

#### EQUIPMENT:

TANKS: Two (2) single-walled steel tanks are used to store citrus oil (mixed). The tanks are manifold together and located within a concrete secondary containment with roof. The exterior coating of the tanks appears to

#### Facility ID: 9602496

be in satisfactory condition. No dripping/leaking issues were observed during the inspection. The system is properly labeled. Corrosion of metal components must be minimized by periodic maintenance.

SPILL CONTAINMENT - Consists of tight fill, fill port located within the secondary containment.

OVERFILL PROTECTION – The fill port is located within a secondary containment which provides for overfill protection. The system is also equipped with a Krueger gauge.

PIPING – Consists of a single-walled piping not in contact with the soil and located within the secondary containment. Except for minor corrosion, the piping was observed in satisfactory. Corrosion of metal components must be minimized by periodic maintenance.

DISPENSER/ HOSES/NOZZLES - The system consists of one dispenser with hose located within the secondary containment.

RELEASE DETECTION: The facility conducts monthly visual inspections of visible/exposed tank components including; tank coating, secondary containment, hoses, and nozzles. The system is located within a concrete secondary containment that provides for overfill and release protection. The secondary containment was observed in satisfactory condition at time of inspection.

#### DOCUMENTS REVIEW:

PLACARD: The Placard expiration date is June 30, 2021. Storage tank registration fees are due to the Department each year by July 1. Ensure that your contact information is up to date with the Department in order to receive updates concerning your annual registration fees. Once fees are paid, you must print a copy of your placard from the Department's website: http://www.fldepportal.com/go/submit-registration/.

FINANCIAL RESPONSIBILITY: Tanks used to store non – petroleum products are not required to have insurance.

MONTHLY VISUAL INSPECTION REPORT: Monthly visual inspections of visible/exposed tank components are conducted weekly. Period reviewed: May 7, 2018 to November 16, 2020 (last visual inspection).

ANNUAL OPERABILITY TEST/ OVERFILL AND RELEASE DETECTION: Not required. The tanks and components are located within a concrete secondary that provides for overfill and release detection. However, "the secondary containment shall be: "impervious to the regulated substances being stored in the storage tank system and able to withstand deterioration from external environmental conditions". For the Krueger Gauges, the manufacturer recommends to verify their operability ever six months.

#### **GENERAL REMINDERS:**

Incident investigations must be initiated within 24 hours. If within 72 hours of discovery the investigation does not confirm that a discharge did not occur, then the incident must be reported to the contracted county. All positive responses of release detection devices (such as alarms) must be investigated and a determination made as to whether a discharge occurred. Records of all incidents must be maintained along with the incident investigation findings for inspection by the Department or contracted county.

Repairs, Operation and Maintenance: Storage tank system equipment shall be maintained in sound operational condition to reduce the likelihood of releases and incidents. Corrosion of metal components must be minimized by periodic maintenance.

Records generated on or after January 11, 2017, shall be kept for three years. Records generated before January 11, 2017, are required to be kept for two years, in accordance with rule 62-762.711, F.A.C.

Due to the COVID 19 pandemic, the facility representative was not required to sign the report.

The inspection report was provided by e-mail to: Jimmy Jara (Jimmy.Lara@cpsagu.com)

### **Inspection Photos**

Added Date 11/20/2020

General view of the system

Added Date 11/20/2020

Dispenser



Added Date 11/20/2020

**Containment Liner** 



Added Date 11/20/2020

Krueger Fuel Level Gauge



Added Date 11/20/2020

Product info

Added Date 11/20/2020

Piping



From:	Madala, Madhuri on behalf of tankregistration
To:	tankregistration; MIKE.WHITTEN@NUTRIEN.COM
Subject:	FW:Fac id#9602496- Crop Production Services-Immokalee
Date:	Thursday, July 8, 2021 12:21:40 PM
Attachments:	image001.png Facility Registration Form Immokalee Tresoil Tanks.pdf image002.png image003.png

Per your request new Account owner/property owner information is updated for Fac ID#9602496.

#### New tanks are added as well.

You may access the DEP Business Portal to pay and print placard for STCM#81281 by following the below instructions.

📓 Florida Department of Environmental Protection - Enterprise Applications —	$\times$
🖞 Tanks Rel party Account Loc / comments History Detail Compliance Create Discharge RePorts Help Exit Wir 🕨 📿 🗛	⊂∟∈
💿 Storage Tank/Contamination Tracking - Pacinty Detail	
Facility ID 9602496 Facility Status OPEN Create Date 11/06/1996	
County 11 COLLIER District SD Name Update 01/15/2009	
Name * CROP PRODUCTION SERVICES-IMMOKALEE Addr Update 01/15/2009	
Address * 116 JEROME DR Comments?(Y/N) Y	
Address2 Account Status PLACARD DUE	
City IMMOKALEE FL 33934 ASTC 8 USTC 0	
Facility Contact Name JIMMY JARA Facility Contact Phone 239-657-3168 Ext Phone #	
Invoice Activity Date 06/02/2021 Contact Phone Verified By MADALA M Changes Verified?	
Current Placard Date 06/02/2021 Contact Phone Last Verified 07/08/2021	
24 HR Emergency Contact Name - Phone Ext	
Facility Type * M AGRICULTURAL DEP Contract Owned * P	
Financial Resp. EXEMPT-NOT REQUIRED	
Insurance Comp Coverage Period 05/14/2018 05/14/2023	
Cleanup Status Effective	
Owner Name NUTRIEN AG SOLUTIONS Primary Role ACCT OWN	
Address 10150 HIGHLAND MANOR DR #130 Owner ID# 81281	
Address2 ATTN: STORAGE TANK REGIS	
City/St/Zip TAMPA, FL 33610 Begin Date 07/08/2021	
Last Updated 12/22/2020 Phone 813-394-2964 Ext Bad Address? N	
Contact MIKE WHITTEN (970) 865-3300 Registr Coord	
Email Address MIKE.WHITTEN@NUTRIEN.COM	
STCM FACILITY	J

le Florida Department of Environmental Protection - Enterprise Applications

	jes <u>A</u> ccour		cct Histo	ry <u>C</u> omme		<u>P</u> orts <u>H</u> el		ndow			C	DRA
] 🚊 📭	. 🔁 🚰	2 4					? 🖄					
Facility 🔀 Name	_	02496				Construc	) [/	iping '	* Mon	itoring *		
NUTRIEN A	G SOLUTION	S (ID #81281	)			L		<u> </u>				
MIKE WHIT	TEN (970) 86	5-3300				Q		-8				
10150 HIGH	ILAND MANO	R DR #130				- H		-11				
ATTN: STO	RAGE TANK	REGIS					;	i,		<b>-</b>		
ТАМРА		FL 33	3610									
Fee assess	sment begin	date is *		07/2021	]							
Added	Tnk ID *	T/V/D *	A/U *	Gallons	Install		Content & Date		Status & Date	Last Updated on	Repl Tank	
11/1996	4	TANK	AE	2500		Q	06/1995	В	04/2003	05/04/2004		
05/2004	5	TANK	AE	2500	04/2003	Q	04/2003	В	05/2018	06/25/2018	3	
05/2004	6	TANK	AE	2500	04/2003	Q	04/2003	В	05/2018	06/25/2018	4	Ī. l
07/2021	7	TANK	AE	3000	06/2021	Q	06/2021	U	06/2021	07/08/2021		
07/2021	8	TANK	AE	3000	06/2021	Q	06/2021	U	06/2021	07/08/2021		
		NO	TE: ** Ins	tall MM/YYY	Y takes p	riority; if bla	ank, fee asse	ssme	ent begins to	day		TANK2

- http://www.fldepportal.com/go/
- Click on "Submit or Pay"
- Click on "Registration/Notification"
- Click on "Storage Tank Registration"
- Enter: e-mail address and password for the e-mail you want your placard sent to. (You need to have already registered this e-mail account with DEP).
- If you have not already registered, please click on Register to proceed.
- Click Yes for Do you have STCM#?
- Enter STCM#81281
- You can click on Pay online to pay invoice and the placard will be emailed.
- or
- Request Placard (if you simply need to print your placard).
- Enter the STCM#
- Click: Search and Continue
- Select: Placard(s) you want printed and placard(s) will be emailed.

#### Thank you,

Madhuri Madala Waste Registration Department Of Environmental Protection PH :850-245-8834 Fax :850-412-0405 Madhuri.Madala@floridadep.gov

From: Michael Whitten <Mike.Whitten@nutrien.com> Sent: Wednesday, June 30, 2021 5:57 PM To: tankregistration <tankregistration@dep.state.fl.us>
Subject: Storage Tanks Crop Production Services-Immokalee

Michael L. Whitten Safety, Health L Environmental Manager Nutrien 10150 HighLand Manor Dr Suite 130 Tampa, Fl 33610 Cell (813) 394-2964 Office (813) 630-1471 mike.whitten@nutrien.com

For more information on Nutrien's email policy or to unsubscribe, click here: <u>https://www.nutrien.com/important-notice</u> Pour plus de renseignements sur la politique de courrier électronique de Nutrien ou pour vous désabonner, cliquez ici: <u>https://www.nutrien.com/avis-important</u> Site 56 – M & M Salvage and Used Auto Parts, Inc. (also known as Immokalee Waste Tire Site/Robert's Auto Salvage, W & T Salvage Yard, and Jay's Towing)



# FLORIDA DEPARTMENT OF Environmental Protection

South District PO Box 2549 Fort Myers FL 33902-2549 SouthDistrict@FloridaDEP.gov Ron DeSantis Governor

Jeanette Nuñez Lt. Governor

Shawn Hamilton Secretary

August 28, 2023

Nancy Macias M & M Salvage & Used Auto Parts Inc 5615 Taylor Rd Naples, FL 34109-1826 <u>mmsalvage@embarqmail.com</u>

Re: Compliance Assistance Offer M & M Salvage & Used Auto Parts Inc FLR05H006 Collier County – NPDES

Dear Nancy Macias:

A National Pollutant Discharge Elimination System (NPDES) Stormwater inspection was conducted at your site on June 12, 2023, under the authority of Section 403.091, Florida Statutes (F.S.). During this inspection, potential non-compliance was noted. The purpose of this letter is to offer compliance assistance as a means of resolving these matters.

Potential non-compliance of Chapter 403, F.S., Chapter 62-620, Florida Administrative Code (F.A.C.), and Chapter 62-621, F.A.C. were observed. Please see the attached inspection report for a full account of Department observations and recommendations.

We request you review the item(s) of concern noted in the attached inspection report and respond in writing within **15 days** of receipt of this Compliance Assistance Offer. Your response should include one of the following:

- 1. Describe what you have done to resolve the non-compliance or provide a time schedule to address the items of concern noted in the attached report. (See "Inspector Comments" on the final page of the report),
- 2. Provide information that either mitigates the concerns or demonstrates them to be invalid, or
- 3. Arrange for the case manager to visit your site to discuss the item(s) of concern.

M & M Salvage & Used Auto Parts Inc FLR05H006 Compliance Assistance Offer Page 2 of 2

It is the Department's desire that you are able to adequately address the items of concern so that this matter can be closed. Your failure to respond appropriately may result in the initiation of formal enforcement proceedings.

Please address your response and any questions to Christopher Wong of the South District Office at (239) 344-5613 or via e-mail at <u>Christopher.Wong@FloridaDEP.gov</u>. We look forward to your cooperation with this matter.

Sincerely,

What you

Matt Czahor Environmental Administrator South District Office Florida Department of Environmental Protection

Enclosure: Stormwater Inspection Report and Photo Log



# **Department of Environmental Protection** Industrial Stormwater Inspection Report Form DWRM - WCAP - 20 - 043

Updated 08.01.22



Facility and Ins	pection Infor	mation								
Physical Location	-						T			
M & M Salvage		Parts Inc		Permit No.: FLR05H006		Inspection Date:	J	un 12, 2023	3	
106 Dixie Ave E				Effective Date	e: Ma	y 7, 2020	Entry Time:		10:05 AM	
Immokalee , FL 34142-3552			Expiration Da		y 6, 2025	Exit Time:		10:17 AM		
Mailing Address:				District:		South	Hydrologic			
M & M Salvage		Parts Inc		County:		Collier	Conditions:		Normal	
5615 Taylor Rd				Water Mgmt.			Latitude:	26 °	25 '	42.97
Naples		, FL	34109-1826	District:	S	FWMD	Longitude:	81 °	24 '	51.63
Receiving Waters	s or MS4:	, 12		No. Employee	es:	N/A	Size of Property (acres		3	01100
Outfall To Collie				No. Shifts:		N/A	Years at Location:	,	13	
Classification:		10	Other: N/A	Operating Hrs		N/A	No. of Outfalls:		1	
			Other: N/A	Operating His	S.:	N/A	No. of Outlans:		1	
Industrial Activi										
SIC Code:	Analytical		Sector:	Sector Descrip	-					
5015	Ye	S	М	Automobile S	Salvage Yard	S				
2										
Company Repre										
On-Site Represer		I	Title	1	<u>C</u>		anization Name	1	<u>Teleph</u>	
N/A			N/A			N	/A		N/A	1
<b>D</b>						(2)				
Responsible Auth	• • •	I	Title			anization Name	1	<u>Teleph</u>		
Nancy M			Owner			Used Auto Parts Inc		(239) 597	-4703	
RA Email Addres		mmsalvage	e@embraqmail.con							
			ntact the department ted in the inspector				on, and any other docum	entation	necessary to	o address
Weather Condit Possible rain ever		t 24 hours.								
Summary Evalu	ation									
Overall Inspectio		Out of Cor	npliance							
Section Ratings:	2		Ratings K	ley:						
			factory or In Compliance $N/A = Not Applicable$							
			ginal or Out of C	-			C = Not			
	ite Review	-		tisfactory or Sig	-	ut of Compli	ance			
M Plans/Mo			N = Not H		-					
Inspector Inform	÷									
Inspector			Office				Email		Teleph	one
Christopher			South District C	Office	<u>C</u>	hristopher.W	/ong@FloridaDEP.gov		(239) 344	



Form DWRM - WCAP - 20 - 043 Updated 08.01.22



### Permit

Is coverage under a Multi-Sector Generic Permit (MSGP) required?	Yes				
If 'No,' why not?	Not Applicable				
Has an MSGP been applied for?	Yes				
If 'Yes,' is the permit Active?	Yes				
If 'No,' why not?	Not Applicable				
Comments:					
Rating: This item is rated as 'Satisfactory'.					

### **Condition of Receiving Waters**

Is stormwater discharge apparent at the time of the inspection?	No
Is there evidence that there has been a discharge of polluted runoff to a regulated receiving water (past or present)?	No
If 'Yes', explain:	
N/A	
Comments:	
Rating: This item is rated as 'Satisfactory'.	

### Facility Site Review - No Exposure Certification (NEX)

Are any	Are any of the following materials or activities exposed to precipitation:					
1.	Areas for storage, maintenance, washing, or use of industrial machinery or equipment?	Not Applicable				
2.	Materials or residuals from spills/leaks on the ground or in stormwater inlets?	Not Applicable				
3.	Materials or products from past industrial activities?	Not Applicable				
4.	Material handling equipment (except for adequately maintained vehicles)?	Not Applicable				
5.	Loading, unloading, or transportation of materials or products?	Not Applicable				
6.	Materials or products stored outdoors (except for final products intended to be used outside)?	Not Applicable				
7.	Materials contained in open, deteriorated, or leaking storage containers such as drums, barrels, or tanks?	Not Applicable				
8.	Materials or products that are handled/stored on road or rails owned/maintained by the facility?	Not Applicable				
9.	Waste materials (except for waste in covered, non-leaking containers (e.g., dumpsters))?	Not Applicable				
10.	Process wastewater application or disposal (unless otherwise permitted)?	Not Applicable				
11.	Particulate matter or visible deposits of residuals from roof stacks and/or vents not otherwise regulated (e.g., under an air quality control permit) and evident in stormwater discharges?	Not Applicable				
Commer	nts:					
Facility	does not have a No Exposure Certification, therefore this section does not apply.					

Rating: This item was not rated.



Form DWRM - WCAP - 20 - 043

Updated 08.01.22



### Facility Site Review - Multi-Sector Generic Permit (MSGP)

Have the provisions of the Stormwater Pollution Prevention Plan (SWPPP) been implemented?	None
If 'Some' or 'None', explain what has not been implemented:	
SWPPP was not available for review the site was inactive.	
Is there a potential for the discharge of polluted stormwater from the site to a regulated receiving water or	
Municipal Separate Storm Sewer System (MS4)?	Yes
Are Best Management Practices appropriate for the activities occurring on site to protect regulated surface	No
waters?	110

### Best Management Practices (BMPs)

Area of Concern	Which BMPs are currently employed at the facility?	Are BMPs maintained consistent with the SWPPP?	Do BMPs appear sufficient to protect surface waters?
Vehicle / Equipment Wash and Rinse Areas	None on site.	No	No
Fueling Areas	No fueling is conducted on site.	No	No
Vehicle / Equipment Maintenance Areas	Could not enter site to inspect.	No	No
Outdoor Manufacturing Areas	No areas of concern at this time.	No	No
Outdoor Stockpile / Material Handling Areas	Cars are stored outdoors around the perimeter of the property. There are is a pile of tires stored outdoors. Automotive parts are seen stored in trunk beds.	No	No
Trash and Debris Areas	No trash cans on site; facility is inactive.	No	No
Loading / Unloading Transfer Areas	No areas of concern at this time.	No	No
Illicit Connections to SW System (e.g., floor drains)	None observed.	No	No
Chemical Storage Tanks (New and Used fluids)	Could not enter site to inspect.	No	No
Stormwater Treatment System	There is a canal along the North West side of the property. The property's stormwater discharge most likely flows into this canal.	No	No
Comments:		1	
Some automotive parts store	d outdoors will need to ham BMPs implemented to for pollu	ution control.	

Rating: This item is rated as 'Marginal'.



Form DWRM - WCAP - 20 - 043 Updated 08.01.22



### **Plans/Monitoring -** SWPPP

Has a SWPPP been prepared for the facility?	No
Is the SWPPP available for review at the time of inspection?	No
Does the SWPPP appear accurate and up-to-date?	No
Does the SWPPP appear to meet the standards set forth in the MSGP (See the SWPPP Checklist for all applicable areas)?	No
Are applicable records kept for three (3) years from the date of collection?	No
Comments:	

### Plans/Monitoring - Analytical Monitoring

Is the facility subject to analytical monitoring requirements?	No
If so, have the following conditions been met:	
- Has a monitoring schedule been identified?	No
- Has sampling been performed per the minimum requirements of the MSGP?	No
- Have the Discharge Monitoring Reports (DMRs) been submitted to the Department as required by the MSGP?	No
Has the facility reported any benchmark exceedances on DMRs submitted during the current permit cycle?	No
- If 'Yes', did the facility document a re-evaluation of the SWPPP measures and controls to address exceedances?	No
- Have all noted updates to measures and controls been implemented at the facility?	No
<b>Note:</b> Failure to amend and implement changes to the SWPPP as result of benchmark exceedance(s) constitutes a and IV.C. of the MSGP. Benchmark exceedance(s) may indicate a cause or contribution to water quality impairm	
Comments:	

### Plans/Monitoring - Compliance Monitoring

f so, what frequency are the following activities conducted	1			
Activity	Conducted	Frequency of Activity		
- Wet Deck Storage	N/A	Not Applicable		
- Phosphate Fertilizer Manufacturing	N/A	Not Applicable		
- Asphalt Paving / Roofing Emulsions Production				
- Cement Manufacturing				
- Coal Pile Storage				
Are discharges sampled at least once per year and tested for ctivities?	ied for the	Not Applicable		
Are the discharge samples subject to the numeric effluent lin	nitations prie	or to mixing with other di	scharges?	Not Applicable
Have the compliance monitoring DMRs been submitted to t year following monitoring? (e.g., results are due by March 3	Not Applicable			



Form DWRM - WCAP - 20 - 043

Updated 08.01.22



### **Plans/Monitoring -** Annual Comprehensive Site Compliance Evaluation (ACSCE)

Did the facility perform an ACSCE in the past 12 months?	No
Does the report contain the following:	
- Scope of the evaluation?	No
- Date of the evaluation?	No
- Any major observations relating to the implementation of the SWPPP?	No
Have the following conditions been met?	
- A determination of the effectiveness of the SWPPP?	No
- An assessment of compliance with the terms of the MSGP?	No
- A report documenting the results of the evaluation, and any required updates to the site / SWPPP?	No
Have the results of the ACSCEs been maintained for a minimum of three (3) years from the date of collection?	No
Comments:	

### **Plans/Monitoring -** Quarterly Visual Monitoring (QVM)*

No
No
No
No
No
No



Form DWRM - WCAP - 20 - 043 Updated 08.01.22



### Plans/Monitoring - Industrial SWPPP Checklist

Section	Yes / No	Comments
Is the SWPPP current and up-to-date?	No	No SWPPP was available for review.
Pollution Prevention Team	No	
Description of Potential Pollutant Sources	No	
Drainage	No	
Inventory of Exposed Materials	No	
Significant Spills and Leaks	No	
Non-Stormwater Discharges	No	
Sampling Data	No	
Summary of Potential Pollutant Sources	No	
Measures and Controls	No	
Good Housekeeping	No	
Preventative Maintenance	No	
Spill Prevention and Response	No	
Inspections	No	
Employee Training	No	
Record Keeping	No	
Sediment and Erosion Control	No	
Management of Runoff	No	
Annual Comprehensive Site Compliance Evaluation FLR05H006	No	

	epartment of Environmental Protection dustrial Stormwater Inspection Report Form DWRM - WCAP - 20 - 043 Updated 08.01.22	•
	<b>Inspection Rating Determination Form</b>	
Point Total: 8	Out of Compliance	
Letter Type: 6-12 0	Compliance Assistance Offer Letter Letter Letter to Send: Compliance Assistance Offer Letter	1
<b>S</b> = S	atisfactory $\mathbf{M} = $ Marginal $\mathbf{U} = $ Unsatisfactory $\mathbf{N} = $ Not Evaluated	
s Perm	it	Pts
s	Has a Permit or Exclusion from coverage, and NOI is located on site	1
М	Has applied for Permit or Exclusion from coverage, but it is not active	2
U	Has not obtained permit coverage, or does not qualify for a No Exposure Exclusion	10
s Cond	ition of Receiving Waters	Pts
S	Receiving water is not impacted from the offsite discharge of polluted runoff	1
Μ	Receiving water is <i>moderately</i> impacted from the offsite discharge of polluted runoff	3
U	Receiving water is significantly impacted from the offsite discharge of polluted runoff	6
Ν	No inspection completed, or access to discharge areas was not able to be obtained	0
м Facili	ty Site Review	Pts
S	Overall, the site poses little to no chance for the offsite discharge of polluted stormwater	1
Μ	Overall, the site poses a moderate chance for the offsite discharge of polluted stormwater	3
U	Overall, the site poses a significant chance for the offsite discharge of polluted stormwater	6
Ν	No inspection completed, or access to the facility was not able to be obtained	0
M Plans	/Monitoring	Pts
S	SWPPP is complete. Required records are up to date and accurate	1
Μ	SWPPP is not more than 50% incomplete and/or not updated. Incomplete records, or inspections/ reports are no more than 12 months past due	3
U	No SWPPP, or SWPPP is more than 50% incomplete. No records within the previous 12 month period	6
Ν	No permit, or a SWPPP is not required	0



Form DWRM - WCAP - 20 - 043

Updated 08.01.22



### **Single Event Violations**

Check for Yes	Eval Area	Finding Code	SEV Code	Description			
	RRPT	STM2	D0N11	The facility was discharging without an industrial stormwater generic permit.			
4	RRPT	STM3	B0N12	The facility failed to conduct inspections according to the industrial stormwater generic permit.			
K	FACS	STM4	B0N18	The facility failed to implement the stormwater pollution prevention plan for the industrial stormwater generic permit.			
R	RRPT	STM5	B0N41	e facility failed to maintain records for the industrial stormwater generic permit.			
K	RRPT	STM6	C0N11	e facility failed to monitor according to the industrial stormwater generic permit.			
	RRPT	STM7	B0N17	facility failed to develop any or an adequate stormwater pollution prevention plan for the industrial mwater generic permit.			
K	FACS	STM8	BN19A	The facility failed to properly install/implement best management practices.			
	FACS	STM9	BN19B	The facility failed to properly operate/maintain best management practices.			
4	RRPT	STMA	E0N16	The facility failed to submit the required non-DMR report for the industrial stormwater generic permit.			
	RPPT	STMB	D0N18	The facility did not submit a Notice of Termination once all stormwater discharges associated with industrial activities had ceased.			

### **Inspector Comments**

Rationale for Letter:

Within 15 days of receipt of this letter, contact the department, provide pictures, a narrative description, and any other documentation necessary to address the following CORRECTIVE ACTIONS:

1. Implement Best Management Practices (BMPs) to minimize the discharge of pollutants from outdoor storage of Engine Parts and Tires.

2. Provide a copy of the facility's Stormwater Pollution Prevention Plan (SWPPP) to the Department.

3. Provide copies of your Quarterly Visual Monitoring (QVM) and Annual Comprehensive Site Compliance Evaluation (ACSCE) records for the past three years to the Department.

4. If the site is to be inactive please remove all storage of pollutant sources and terminate the permit.

Yes Yes

### Manager/Reviewer Comments

Concur with Recommendation? Comments:

no 💭

### **Inspector Signature**

Manager/Reviewer Signature

the

Signed: Aug 25, 2023

Signed: Aug 18, 2023 FLR05H006





Permit No.:FLR05H006Facility/Site Name:M & M Salvage & Used Auto Parts Inc



 Photo #:
 1

 Date:
 Jun 12, 2023

 Time:
 10:07 AM

 Captured by:
 Christopher Wong

### **Details**:

Facility is no longer in operation; however, the facility still holds an active permit. To close the permit the facility will have to remove all its potential pollutant sources to be in compliance with the permit.





Permit No.:FLR05H006Facility/Site Name:M & M Salvage & Used Auto Parts Inc



 Photo #:
 2

 Date:
 Jun 12, 2023

 Time:
 10:08 AM

 Captured by:
 Christopher Wong

### **Details**:

Facility is no longer in operation; however, the facility still holds an active permit. To close the permit the facility will have to remove all its potential pollutant sources to be in compliance with the permit.





Permit No.:FLR05H006Facility/Site Name:M & M Salvage & Used Auto Parts Inc



 Photo #:
 <u>3</u>

 Date:
 Jun 12, 2023

 Time:
 10:09 AM

 Captured by:
 Christopher Wong

### **Details**:

Facility is no longer in operation; however, the facility still holds an active permit. To close the permit the facility will have to remove all its potential pollutant sources to be in compliance with the permit. The facility will need to remove the pile of old auto parts stored outdoors.





Permit No.:FLR05H006Facility/Site Name:M & M Salvage & Used Auto Parts Inc



 Photo #:
 4

 Date:
 Jun 12, 2023

 Time:
 10:09 AM

 Captured by:
 Christopher Wong

### **Details**:

Facility is no longer in operation; however, the facility still holds an active permit. To close the permit the facility will have to remove all its potential pollutant sources to be in compliance with the permit. The facility will need to remove the tires and any auto parts that are listed as a pollutant source.





Permit No.:FLR05H006Facility/Site Name:M & M Salvage & Used Auto Parts Inc



 Photo #:
 5

 Date:
 Jun 12, 2023

 Time:
 10:12 AM

 Captured by:
 Christopher Wong

### **Details**:

Facility is no longer in operation; however, the facility still holds an active permit. To close the permit the facility will have to remove all its potential pollutant sources to be in compliance with the permit. The facility will need to remove the tires and any auto parts that are listed as a pollutant source.



### NOTICE OF INTENT TO USE MULTI-SECTOR GENERIC PERMIT FOR STORMWATER DISCHARGE ASSOCIATED WITH INDUSTRIAL ACTIVITY (RULE 62-621.300(5), F.A.C.)

This form is to be completed and submitted to the Department before use of the Multi-Sector Generic Permit for Stormwater Discharge Associated with Industrial Activity (MSGP) provided in subsection 62-621.300(5), F.A.C. The type of facility or activity that qualifies for use of this generic permit, the conditions of the permit and additional requirements to request coverage are specified in paragraph 62-621.300(5)(a), F.A.C. Note that additional requirements for requesting coverage include submittal of the applicable generic permit fee pursuant to Rule 62-4.050, F.A.C. Familiarize yourself with the generic permit and the attached instructions before completing this form. **Please print or type information in the appropriate areas below.** 

I. IDENTIFICATION NUMBER:

FLR05H006-003 Facility ID

#### II. APPLICANT INFORMATION:

A. Operator Name: M & M Salvage & Used Auto Parts Ir B. Operator Status: O							
C. Address: 5615 Taylor Rd							
D. City: Naples E. State: FL F. Zip Code: 34109 1958							
G. Responsible Authority: Nancy Macias							
H. Responsible Authority's Phone No.: (239) 597-4703							
I. Responsible Authority's Fax No.:							
J. Responsible Authority's E-mail Address: mmsalvage@emba	rqmail.co	om					

### III. FACILITY LOCATION INFORMATION:

A. Facility Name: M & M Salvage & Used Auto Parts Inc									
B. Street Address: 106 Dixie Ave E									
C. City: Immokalee D. State: FL E. Zip Code: 34142 3552									
F. County: Collier	° 25 ′ 4	2.96	"	Lon	gitude: -81	° 24	′ 51.62	"	
H. Is the facility located on Indian C	H. Is the facility located on Indian Country Lands? Yes Vo I. Water Management District: SFWMD								
J. Facility Contact: Janet Marie McQu			K. Ph	one N	lo.: (239) 657	-5220			
L. Fax No.: M. E-mail Address: mmsalvage@embarqmail.com									

#### IV. FACILITY ACTIVITY INFORMATION:

A. SIC or Designated Activi	Primary: 5015	5	Secondary:		
B. Monitoring code (1, 2, 3, or 4): 2 C. Will cons			ruction be conducted	for stormwa	ater controls? Yes 🗸 No
D. Other Existing Permits	ERP No.:		Wastewater Permit No.:		Other (specify):

#### V. DISCHARGE INFORMATION

A. MS4 Op	A. MS4 Operator Name: Collier County - FLR04E037									
	B. Discharge Location(s):									
Outfall		Latitude	:	Desition Western						
No.	Deg.	Min.	Sec.	Deg.	Min.	Sec.	Receiving Water Name			
	26	25	42.9693	-81	81 24 51.6273					

#### VI. CERTIFICATION¹:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Responsible Authority Name and Official Title (Type or Print):

Nancy Macias, Nancy Macias

Nancy Macias

Responsible Authority Signature:

May 04, 2020

Date Signed:

¹ Signatory requirements are contained in Rule 62-620.305, F.A.C.

#### INSTRUCTIONS – DEP FORM 62-621.300(5)(b) NOTICE OF INTENT (NOI) TO USE MULTI-SECTOR GENERIC PERMIT FOR STORMWATER DISCHARGE ASSOCIATED WITH INDUSTRIAL ACTIVITY (MSGP)

#### Who Must File an NOI:

Federal law at 40 CFR Part 122 prohibits point source discharges of stormwater associated with industrial activity to waters of the United States without a National Pollutant Discharge Elimination System (NPDES) permit. Under the State of Florida's delegated authority to administer the NPDES program, operators that have stormwater discharge associated with industrial activity to surface waters of the State must file for and obtain either coverage under an appropriate generic permit contained in Chapter 62-621, Florida Administrative Code (F.A.C.), or an individual permit issued pursuant to Chapter 62-620, F.A.C.

#### Where to File an NOI:

The Department encourages the electronic submission of NOIs for coverage under this generic permit through the NPDES Stormwater Program's electronic permitting application available at http://www.dep.state.fl.us/water/stormwater/npdes/. As an alternative, NOIs may be submitted by paper copy to the following address:

NPDES Stormwater Notices Center, MS #2510 Florida Department of Environmental Protection 2600 Blair Stone Road Tallahassee, Florida 32399-2400

#### Part I – Identification Number:

Enter the facility's DEP identification number (generic permit coverage number) if known. If an ID number has not yet been assigned to this facility, leave this item blank.

#### **Part II – Applicant Information:**

<u>Item A.</u>: Provide the legal name of the person, firm, public organization or any other entity that operates the facility described in this application. The operator of the facility is the legal entity which controls the facility's operation rather than the plant or site manager. The name of the operator may or may not be the same as the name of the facility.

Items B.: Enter the appropriate one letter code from the list below to indicate the legal status of the operator of the facility:

F = Federal; S = State; P = Private; M = Public (other than federal or state); O = Other

Items C.-F.: Provide the complete mailing address of the facility operator, including city, state and zip code.

<u>Items G. – J.</u>: Provide the name, telephone and fax number (including area code) and e-mail address of the person authorized to submit this application on behalf of the facility operator. This should be the same person as indicated in the certification in Part VI.

#### **Part III – Facility Location Information:**

<u>Items A. – E.</u>: Enter the facility's official or legal name and complete street address, including city, state and zip code. Do not provide a P.O. Box number as the street address.

Item F.: Enter the county in which the facility is located.

Item G.: Enter the latitude and longitude of the approximate center of the facility.

Item H.: Indicate whether the facility is located on Indian Country Lands.

<u>Item I.</u>: Enter the appropriate five or six letter code from the list below to indicate the Water Management District the facility is located within:

NWFWMD = Northwest Florida Water Management DistrictSRWMD = Suwannee River Water Management DistrictSFWMD = South Florida Water Management DistrictSWFWMD = Southwest Florida Water Management DistrictSJRWMD = St. John's River Water Management District

<u>Items J. – M.</u>: Give the name, telephone and fax number (including area code) and e-mail address of the person who is thoroughly familiar with the operation of the facility, with the facts reported in this application and who can be contacted by the Department if necessary.

#### Part IV – Facility Activity Information:

<u>Item A.:</u> List, in descending order of significance, up to two 4-digit standard industrial classification (SIC) codes that best describe the principal products or services provided at the facility identified in Part III. For industrial activities defined in 40 CFR 122.26(b)(14)(i)-(xi) that do not have SIC codes that accurately describe the principal products produced or services provided, use the appropriate two letter code from the list below:

- HZ = Hazardous waste treatment, storage or disposal facilities, including those that are operating under interim status or a permit under subtitle C of RCRA [40 CFR 122.26(b)(14)(iv)].
- LF = Landfills, land application sites and open dumps that receive or have received any industrial wastes, including those that are subject to regulation under subtitle D of RCRA [40 CFR 122.26(b)(14)(v)].
- SE = Steam electric power generating facilities, including coal handling sites [40 CFR 122.26(b)(14)(vii)].
- TW = Treatment works treating domestic sewage or any other sewage sludge or wastewater treatment device or system used in the storage, treatment, recycling and reclamation of municipal or domestic sewage [40 CFR 122.26(b)(14)(ix)].

<u>Item B.</u>: Enter the appropriate 1-digit monitoring code for the facility from the list below. The monitoring requirements for the facility are contained in the MSGP.

- 1 = Not subject to monitoring requirements under the conditions of the permit.
- 2 = Subject to monitoring requirements <u>and</u> required to submit data.
- 3 = Subject to monitoring requirements but <u>not</u> required to submit data.
- 4 = Subject to monitoring requirements but submitting certification for monitoring exclusion.

Item C.: Indicate whether any construction will be conducted to install or develop stormwater controls.

<u>Item D.:</u> Provide the permit number for any existing state, federal or local environmental permit(s) issued to the facility, including any environmental resource permit (ERP) issued by the DEP or the Water Management District; any DEP wastewater facility permit; and any EPA-issued NPDES permit.

#### Part V – Discharge Information:

<u>Item A.</u>: If the facility discharges stormwater associated with industrial activity to a municipal separate storm sewer system (MS4), enter the name of the operator of the MS4 (e.g., municipality name, county name). (See Chapter 62-624, F.A.C. for the definition of an MS4.)

<u>Item B.</u>: If the facility discharges stormwater associated with industrial activity directly to receiving water(s), list each outfall; the receiving water of each outfall; and the latitude and longitude of each outfall, if available.

#### Part VI – Certification:

Type or print the name and official title of the person signing the certification. Sign and date the certification.

Section 403.161, F.S., provides severe penalties for submitting false information on this application (NOI) or any reports or records required by a permit. There are both civil and criminal penalties, in addition to the revocation of permit coverage for submitting false information.

Rule 62-620.305, F.A.C., requires that the application (NOI) and any reports required by the permit to be signed as follows:

- A. For a corporation, by a responsible corporate officer as described in Rule 62-620.305, F.A.C.;
- B. For a partnership or sole proprietorship, by a general partner or the proprietor, respectively; or
- C. For a municipality, state, federal or other public facility, by a principal executive officer or elected official.

# Site 65 – University of Florida IFAS Southwest Florida Research and Education Center (SFREC)

2685 SR 29



February 6, 2024 Roger McGill *UF SWREC* FRMC@ufl.edu

RE: Return To Compliance UF SWERC, Highway 29 N., Immokalee, FL 34142 DEP Facility ID#: 11/8735911 Collier County– Storage Tanks

Dear Storage Tank Owner/Operator:

Collier County Solid and Hazardous Waste Management Division (SHWMD), on behalf of the Florida Department of Environmental Protection (Department), personnel performed a storage tank compliance inspection on April 17, 2023. Based upon documentation provided on July 20, 2023, the facility was determined to have returned to compliance with the Department's Storage Tank rules and regulations.

The Department appreciates your efforts to maintain this facility in compliance with state and federal rules. Should you have any questions or comments, please contact Jay Standiford at 239-207-0981 or James.Standiford@colliercountyfl.gov.

Sincerely,

James A. Standiford IV (Jay) Environmental Specialist I Hazardous Materials/Pollutant Storage Tanks Environmental Compliance Collier County Solid and Hazardous Waste Management Division



•

FDEF	ROUTINE IN	SPECTION (AS	T-No Sumps or Di	ike Field)
Facility Nam	e: University o	F Florida - SWR	EC	
Facility Add	ress: Hwy 29	N. Immstal	r, FL 34/42	
	y ID: 873591			
	Tay Standilord		Collier Cou	nty SHWMD
	esentative: <u>Jrte</u>	Gaanan	Date: Y/	1 -
Inspection re	port emailed to: R	ger McGill (FR		
	A CONTRACT OF		A STATES AND A STATES	The Day
			SE DETECTION REC	ORDS
		or available at site: Y	<u>_ N N/A</u>	(Calm)
	ration correct: Y		A STARLENDED STER	LED RELEASE
FR Financial	Responsibility kept f	for 3 years: YN	_ Type: _ NIP	.0
Insura Dates	ince Company:	Xempt		
		nsibility Forms (Eff. 1/	'11/17): Y N	new control sould
			s included): YN_	N/A
Dates	( ] ] ] ] ]	0 4/6/23		
MVI / ERD		Detection conducted mo	onthly: Y N 1	N/A
Dates				and the set
		ept for 3 years: Y		COMMINNES
		required items: Y		
Release Delet	tion checks had no p	oositive responses: Y <u>レ</u>		
· .	Open Discharges: Y	N N/A		
NY COMPANY		to/map/aerial up to date	e: YN	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
Les press			s up to date: YN	
			Registration ID: Y	N
	FIRST Scheduling /	Outreach uploaded: Y	( <u>_</u> N	Provide Land
COMMENTS			and the second	Esquiries nor en of
Mari	son Blothers	Gevel Nork	gauges - Biok	m
LD yes in Y		a staat of all o	/ / / /	Reamines
OF BUT STORE			SJ 6 10	the second states in the second states in the second states and se
		- F - F		-21MIMV00
N.	Xt. A.A.	1 5 M Ar Ball	A Star MA	
1			2	
1				
		1		
				2/10/20 TB

## **TESTING:**

_	No. 21 States and American
CILAN TELEP	
	VENTION DEVICES tested annually: Y N/A
	Morrison Bustners Fuel level bauges -
M.	Don't work to tosting has not been perform
dation -0	ever the last two years.
LLD RELEASE ]	DETECTION DEVICES tested annually: Y N N/A
	ites: And second to second the second version of the second biogenetic second
	Insurance Company: Elfond f
Shear valves teste Dates:	ad annually: Y N/A V/A VIII of annually: Y N/A VIII of annually: Y
Emergency stop to Dates:	ested annually: Y N N/A 2
	MYR Rolen - Octor from counds kept for 5 years Y Coly
COMMENTS:	Release that which is the dealer required inclusion V V (1944)
COMMENTS:	
COMMENTS:	Release Detection checks and no positive eraponeus: Y Low N NA
	Referent Delection cheeks and no positive asymmetry V V N
SPILL CONTAI	MMENT:
SPILL CONTAI Type: Single wa	Referent Delection cheeks and no positive asymmetry V V N

Product Label: Y____N ___N/A ___ Liquids removed / dry: Y____N ___ No cracking, defects, or holes: Y____N Remote Fill - Check Valve & Isolation Valve present: Y

Release Detection: Visual _

COMMENTS: Add product labels to both spill Buckets

N

N/A

2/10/20 TB

Scanned with CamScanner

based on the second and they	AST No Sumps or Dike Field
TANK(S): $\lambda$ # Tank(s) (Check Interstice)	
Location: Aboveground <u>Sub-generator</u> Marine	Aviation
Type: Double wall Single wall Compartment	ed Diked
Construction: Single wall steel Double wall steel ConV	
AST flammable / combustible tank type: UL 142 UL 2080	
Contents: Diesel Unleaded Premium AV Gas	
Used Oil New Oil Other	
Purpose: Vehicular Fueling Generator Generator	
Water Treatment Sub-Pump Fire Pu	
AST CORROSION under control: Y N N/A	and a second sec
AST Product Type LABELING present: Y N N/A	ninger/articles
AST NFPA 704 placard present: Y N N/A	and minur of the state waters a sets a
AST ANCHORED & GROUNDED: Y N N/A	COMMENTS: AVIA
AST Collision Protection present if impact possible: Y V N	
AST No flammable materials used, i.e. PVC caps: YN N	
AST Setback 3 feet from other tanks and walls: YN N/A	L
AST Flammable / Combustible tank meets setback requirements fo	r buildings & property line
listed in NFPA 30/30A tables: Y / N N/A	~
Located greater than 500 feet from a potable well: YN N	J/A
COMMENTS: 2000 gallon splif (1,000 &SC F 1,	Metallic COldo Solo Solo Solo
is close to the tank shall as possible? Y N N N	1801.ATION 9.41.45 [Jointed
OVERFILL PREVENTION:         Type(s): Audible Alarm Visual gauge OPV Stick         AST has Audible Alarm & Visual Gauge (audible or visible) at fill         Audible alarm set no higher than 90%: Y N N/A         Audible Alarm test button works: Y N N/A         OPV if tight fill: Y N N/A         Inches to Gallons Chart: Y N N/A         LLD present: Y N N/A         COMMENTS:	& Chart <u>Dike Field</u> : Y N N/A
3	
	2/10/20 TB

## VENTING:

AST Emergenery View and all all and a stational station						
AST Emergency Vent on both primary and secondary: Y N N/A						
AST Secondary by design, i.e. concrete, diked. Y N N/A						
AST Vents 12 foot above grade for Class I liquids: Y N N/A						
Class I liquids have Pressure/Vacuum cap: Y_L_NN/A						
Vents not near windows or air intake: Y N N/A						
Vents for Class 1 Liquids extend through roof / not near eaves YN N/A Nothing in the vent line other than vent, i.e. ball check, gauge, etc. YN N/A Manifolded vent piping only with similar fuels: XN N/A						
Vapor recovery present (required class I liquids >10,000 gallons): Y N N/A						
Vapor recovery type: Dual point Co-Axial N/A	te.					
A MARCHORED & A	A					
COMMENTS:	A.					
and the second se	-					
A Set Set Set of a start of the set of th	4					
ST Flagmade is the oright the tank events what communications for buildings of property line.	Ċ3.					
LakeY and so the for the for state	2					
PIPING: N/A	1					
Type: Sustion Dreamwined	1					
Type: Suction Pressurized						
Containment: Single well Dealth well Both						
Containment: Single wall Double wall Both	3					
Material: Metallic FRP Thermoplastic						
Aboveground piping is non-flammable/combustible, i.e. metallic: Y N N/A						
Metallic CORROSION control ok: Y N N/A						
ISOLATION VALVE located as close to the tank shell as possible: Y N N/A						
Gravity head: Y N N/A						
Gravity head has solenoid or ANTI-SIPHON device & downstream of the isolation value:	5					
YNN/A						
Piping emerges from top of the tank for double wall: Y N N/A						
Solenoid is horizontal: Y N N/A						
Release Detection: Visual LLD Sensor at interstitial low point						
COMMENTS	į.					
COMMENTS:						
	127					
	82) 83)					
Print Mary Sector Constant Sec						
Constant Shel and Billion						
and the second sec						
and the second						

4

2/10/20 TB

DISPENSERS: N/A
Dispensers with Fueling positions
AST with dispenser on top is UL-2080 or UL-2085: Y N N/A
Hoses & whips not deformed, cracked, or weeping: Y VN
Breakaways present for non-aviation/marina: YN N/A
Hold open clip removed for aviation/marina nozzles: Y N N/A
Emergency stop located 20-100 feet from each dispenser and labeled: Y N
Dispenser sumps present for underground piping: Y N N/A
Dispenser sump construction: FRP Metallic Poly Multiple N/A
Sensors properly located in dispenser sumps: Y N N/A
Dispenser sumps are free of liquids: Y N N/A
Meet setback requirements for table in NFPA 30A: Y N/A N/A
Release Detection: Visual Sensors
Shear valves installed on pressurized piping: Y N N/A
Shear valves anchored & appear to function properly: Y N N/A

COMMENTS:

LEAKS / SPILLS OBSERVED: Y____ N ____

Additional Comments or Summary:

Scanned with CamScanner

# Site 67 – Collier Health Services (also known as Marion Fether Medical Center)

Oute: Attachments:	Wednesday, September 9, 2020 12:34:02 PM
Subject:	STCH#80583 / FAC ID#9618091 RE: Storage Tank Registration Form
Cc:	Occar Wist tankrepistration
To:	David Montes
From:	Overte, Derbra on behalf of tankregistration

Hild: In terms was per advantant and and and specific hear, STAM 1990 177 CD 991091174 CD was CALLER HALTH 1992 USES has been addabed. Tada Di ha bea kakel.
Nemate to Science 374 AV71.7.5. Ske placed all to depende in plan sives in the effect, incl., or a moder midble backion at the facility where the strange task system is located. The renewal invision(s) will be generated and annual by March 124.2.1.2.4.2.1.2.4.2.1.2.4.2.1.2.4.2.1.2.4.2.4
For more information on the star of Parcile Dalk CH 52/82 which governs the absorptional
storige task, go to <u>tapacianess direks ong Calcesspherdenness og Son Red (2018)</u>
Please do not hexitate to contact tase for further anxietance. Stay andie
Detra B. Orota
Iberks Dords TEP Droised William Mangeman Wass Lepton and Wasses Wass Lepton and Wasses Wass Lepton and Wasses Wass Lepton and Wasses W
Tami: double py v
Sea Marken (# 5548) Walken (# 7 Januar Japan Jap
http://www.iligraphi.com/ac
Inguinese Alexpendie en justeministi
Drigini Mongo
rinn kan in an onananje (2011) Ra Mandanje, Apani (2011) Ta malazjeni sa Mandanje (2011) Ra Mandanje (2011)
C: One With WWW Big Markowski WWW Angel Shapet E FAC DUMPN BE shapet Tank Registrator Form
sugges are for a subscription of the string in a dynamic reas
Hey Mark Instantiation of the Constant of the
Tanakyou
David Monco. prochaing manager 1 inmodule
2 2016 (3):11 (2):35 as (34) experimental (2):35 as (34) experimental (34) as (34)
Satt: Webcardey, Sprander 9, 2000 102, AM
and Experimental Description of the Second S
Goodmanning Dood The way has the fault Data you entering 1 is 100002. The lifetion that will style and that are and be forein you enter that the data you enter that are and the forein you enter that the data you enter that are and the data are are are are are and the data are and the data a
Hack forward to knoting from you soonOorb
Please do na hesitate to cantat me for further assistance. Stay aufo-
Roba R. Ovar
Darks Dorac TDP Driving Ward Manggang Tank Jahong Sang Sang Sang Sang Sang Sang Sang Sa
Tanil: showsone(F) fieldsh22 pr
Swalawal 59-58-59 Walawa 497 Sano-30g Inprison Source State
htp://amer-wh.cise.com/18/96/Cardfyll/g8/IF-001599/Bagdd/11/09/Lab-cfc/cdp/11/94/BAGDINBRW/MET/98444/CFV/Lab-p6/de/CVVIII/sy/Cdp/COMdIndagDDs/gBed/M2/AT- P 5/Gr af John Conference on the Standard St Standard Standard S
2htepinine_SarKuDowKuQPuEeSiLUU2CKRLu[Xhtekme404BbargeCHinYi_uu/WulfeiShin_(Rubot ObjinLqDOWCXYYU002a_Yolpup/%2hteksUDXAQ4bSUU_SUOVXW0AbjSKI]@AQD0ALSUVXW0AbjSKI]@AQD0ALSUVXW0AbjSKI]@ADD1ALSUVEUD
- Origin Manage mic Dirith Manage (Manage) Handback Witt Lage
Smit Turuher Sentember 8 2020 9 30 AM
To takeppinsing takeppinsing the provided state of the second stat
Sabjer: RE: FAC ID/9015091 RE: Storage Task Registration Form
God anning Patha, place or misel application.
an in a der
nam. ja David Mara.
Decking surger Handking
P298.853.41 (C2996.438 dimetei)dea/haven dag
\$Xx6/garC2/237/1087.4kg/00ftyog/3VMtv/5c6/dolon/mit/PJ227LL539/s94087bjodx953pdxtv/bi458Hzf87Kov/ej/spj28AcdB02F73-2bx7-2bx7-2bx7-2bx7-2bx7-2bx7-2bx7-2bx7
Original Monage Time Order, Deter One Monte State Strategy One Related Of Understration
man Careford (and Careford) and Careford (and Careford) an
C2: Doar VW = 0VDhightahaswWH = age
Good admonso David Yoar "Efficitve Dat" and no before your "Install Dat". Place advise. Them: -Darb
Please do not besinate to contract me for further assistance. Stay safe.
Debra R. Orazi TBP Draina d'Atau Mangaman Lina datau mangamantan ana ana ana ana ana ana ana ana an
Debra R. Orazi TBP Draina d'Atau Mangaman Lina datau mangamantan ana ana ana ana ana ana ana ana an
Debra R. Orazi TBP Draina d'Atau Mangaman Lina datau mangamantan ana ana ana ana ana ana ana ana an
Debra R. Orazi TBP Draina d'Atau Mangaman Lina datau mangamantan ana ana ana ana ana ana ana ana an
Debra R. Orazi TBP Draina d'Atau Mangaman Lina datau mangamantan ana ana ana ana ana ana ana ana an
Defa B. Once         File Default School Page           DBP Default School Page         School Page           DBE School Page         School Page           DE School Page         Schoo
Defa B. Once         File Default School Page           DBP Default School Page         School Page           DBE School Page         School Page           DE School Page         Schoo
Net & Dec IDP Dec I
Defa B. Once         File Default School Page           DBP Default School Page         School Page           DBE School Page         School Page           DE School Page         Schoo
Net & Dec IDP Dec I
New York State Sta
Note Note The Descent of the Descen
har bor Bit Description Bit Descriptio
Note Note The Descent of the Descen
har bor Bit Description Bit Descriptio
And New York State
And Pare Res Pa
And Pare Res Pa
And Pare Res Pa
And Pare Res Pa
And Pare Res Pa
And Reference in a second and reference in a
Har Nee Bar Description Bar De
An Are many and a set of the set
And Park and
And and a set of the s
And Park and
And many and a set of the set of
And many and a set of the set of
And a manufacture of the second se
And a manufacture of the second se
A Part of the set o
A Part of the set o
A Part of the set o
Note that the set of the set o
A set of the set of
A set of the set of
A set of the set of
A set of the set of
Note that the set of the set o
A set of the set of
<text></text>
<text></text>
<text></text>
<form>          Image: Control of the second secon</form>
<form>         Image: Procession of the second of the s</form>
Control         Control <t< td=""></t<>
Image: Control of the second
Control         Control <t< td=""></t<>

atomic Subalization of a general state of the state of th



Florida Department of Environmental Protection Twin Towers Office Bldg. 2600 Blair Stone Road, Tallahassee, Florida, 32399-2400 Division of Waste Management Petroleum Storage Systems Storage Tank Facility Routine Compliance Site Inspection Report

## **Facility Information:**

 Facility ID:
 9818091
 County: COLLIER

 Facility Type:
 Z - Other Regulated Facility

 Facility Name:
 COLLIER HEALTH SERVICES

 1454 MADISON AVE W
 IMMOKALEE, FL 34142

 Latitude:
 26° 26' 33.918''

 Longitude:
 81° 25' 55.2216''

 LL Method:
 DPHO

Inspection Date:05/03/2022

# of inspected ASTs: 1 USTs: 0 Mineral Acid Tanks: 0

## **Inspection Result:**

Result: Minor Out of Compliance

## Signatures:

TKCOPC - COLLIER COUNTY SOLID & HAZ WASTE MGMT DEPT (239) 207-0920

## Storage Tank Program Office and Phone Number

Nereida Hernandez

Oscar Villa

Inspector Name

1. Idred

No Signature

**Representative Name** 

Inspector Signature Principal Inspector COLLIER COUNTY SOLID & HAZ WASTE MGMT DEPT

## Representative Signature

## COLLIER HEALTH SERVICES

Owners of UST facilities are reminded that the Federal Energy Policy Act of 2005 and 40 CFR 280 Subpart J requires Operator Training at all facilities by October 13, 2018. For further information please visit: https://floridadep.gov/waste/permitting-compliance-assistance/content/underground-storage-tank-operator-training

## **Financial Responsibility:**

Financial Responsibility:	INSURANCE				
Insurance Carrier:	ACE AMERICAN INSURAN	ICE COMPANY			
Effective Date:	11/23/2021	Expiration Date:	11/23/2022		

## **Overdue System Tests**

Туре	Date Completed	Results	Reviewed	Next Due Date	Comment
Annual Operability - Overfill Protection			05/11/2022	12/15/2021	Test needed to the primary overfill device
Annual Operability - Release Detection			05/11/2022	12/15/2021	Test needed to the leak sensor

## **Completed System Tests**

Туре	Date Completed	Results	Reviewed	Next Due Date	Comment
Annual Operability - Overfill Protection	12/15/2020	Passed	12/29/2020	12/15/2021	The overfill device is tested annually.
Annual Operability - Release Detection	12/15/2020	Passed	12/29/2020	12/15/2021	Rupture basin sensor is tested annually.
Integrity Test - Single- walled Spill Bucket	12/23/2020	Passed	12/29/2020	12/23/2030	Spill bucket is tested on install.

## **Reviewed Records**

Record Category	Record type	From Date	To Date	Reviewed Record Comment
Three Years	Certificate of Financial Responsiblity	11/23/2021	05/11/2022	Part D & P
Three Years	Monthly Maint. Visual Examinations and Results	01/04/2021	05/02/2022	Inspected weekly

## Violations:

Type: Significance:	
Rule:	62-762.501(2)(e)3, 62-762.501(2)(e)3.a, 62-762.501(2)(e)3.b, 62-762.501(2)(e)4, 62- 762.502(2)(e)4, 62-762.502(2)(e)4.a, 62-762.502(2)(e)4.b, 62-762.502(2)(e)5
Violation Text:	Failure to designate, register, or annually test primary overfill protection device,
Explanation:	System test to the designated primary overfill device due on December 15, 2021. An annual operability test shall be performed on the designated primary overfill protection device used to meet the Department's overfill protection requirement at intervals not exceeding 12 months to ensure proper operation.
Corrective Action:	Perform system test to the overfill equipment and send test results to the County inspector by email.
Туре:	Violation
Significance:	Minor
Rule:	62-762.601(7), 62-762.602(7)
Violation Text:	Annual operability testing of release detection systems not completed.
Explanation:	System test to the designated primary overfill device due on December 15, 202. All release detection devices shall be tested annually at intervals not exceeding 12 months

to ensure proper operation.1. Corrective Action: Perform system test to the rupture basin/leak sensor and send test results by email to the County inspector.

## **Inspection Comments**

05/11/2022

Inspection scheduled by email on March 23, 2022.

On May 3, 2022, Nereida Hernandez from Collier County met with Mr. Oscar Villa and Jerry Cabrera, to perform the storage tank compliance inspection. The records were reviewed during the inspection.

No discharge or violations open at time of the inspection.

TANK – One (1) 1,575-gallon, double-walled sub-base generator tank (UL 142) to supply diesel to an emergency power generator. The exterior of tank coating appears to be in satisfactory condition. Corrosion of metal components must be minimized by periodic maintenance. The system is marked per API RP 1637 and NFPA 704.

SPILL CONTAINMENT – The system is equipped with single-walled spill containment bucket mounted on top of the tank with a drain that goes directly into the tank. The fill port is properly labeled. Spill containment in satisfactory condition at time of the inspection.

OVERFILL PROTECTION – The system is equipped with a Rochester Dial Tank Gauge, tight fill connection without overfill prevention valve, and a high-level fuel alarm connected to the annunciator panel. Overfill protection devices must be tested for operability annually at intervals not exceeding 12 months to ensure proper operation. The normal and emergency vents are present and observed to be in satisfactory condition.

NOTE: The system is equipped with a tight fill connection without an overfill prevention valve. Replace the tight fill cap for a screw or flip cap; or install an overfill prevention valve.

"Effective October 17, 2019, owners and operators must designate a primary overfill device. Secondary overfill devices cannot interfere with the proper operation of the designated primary device. The designated primary overfill device must be registered with the Department and perform annual operability testing at intervals not exceeding 12 months."

PIPING – There is no piping associated with the system, except for the supply and return lines which are flexible hoses connected directly to the generator and are in good condition. No anti-siphon or solenoid valve is required, the generator rests on top of the tank and is not producing a gravity head.

RELEASE DETECTION: The facility conducts weekly visual inspections of visible/exposed tank components including spill containment bucket, tank coating, gauge, and sensors. The tank interstitial space is monitored via leak sensor connected to the annunciator panel Release detection devices must be tested for operability annually at intervals not exceeding 12 months to ensure proper operation.

## GENERAL REMINDER:

INCIDENT RESPONSE - An incident is a condition or situation indicating that a release or discharge may have occurred. Incident investigations must be initiated within 24 hours. If within 72 hours of discovery the investigation does not confirm that a discharge did not occur, then the incident must be reported to the contracted county. All positive responses of release detection devices (such as alarms) must be investigated and a determination made as to whether a discharge occurred. Records of all incidents must be maintained along with the incident investigation findings for inspection by the Department or contracted county.

REPAIRS, OPERATION AND MAINTENANCE - Storage tank system equipment shall be maintained in sound

operational condition to reduce the likelihood of releases and incidents. Corrosion of metal components must be minimized by periodic maintenance. Water in excess of one inch in depth or any regulated substances collected in secondary containment shall be removed within 72 hours of discovery and properly disposed.

RECORDS - Records generated on or after January 11, 2017, shall be kept for three years. Records generated before January 11, 2017, are required to be kept for two years, in accordance with rule 62-762.711, F.A.C.

Due to the COVID-19 pandemic, the facility representative was not required to sign the report.

The inspection report was provided by e-mail to Rod Stitt (RStitt@healthcareswfl.org) and Oscar Villa (OVilla@healthcareswfl.org).

## **Inspection Photos**

Added Date 05/11/2022

General view of the system

Added Date 05/11/2022



Spill containment



Added Date 05/11/2022

Overfill-Rochester Gauge

Added Date 05/11/2022

Overfill and leak sensors





May 11, 2022

Rod Stitt <u>RStitt@healthcareswfl.org</u>

RE: Compliance Assistance Offer Collier Health Services 1454 Madison Ave W Immokalee, FL 34142 DEP Facility # 9818091 Collier County – Storage Tanks

Dear Mr. Stitt:

A storage tank inspection and file review were conducted at the above noted facility on or about May 3, 2022, by the Collier County Solid and Hazardous Waste Management Division (SHWMD), on behalf of the Florida Department of Environmental Protection. During the inspection and file review, potential non-compliance was noted. The purpose of this letter is to offer compliance assistance as a means of resolving this matter.

Specifically, potential non-compliance with the requirements of Chapter 376 and 403, Florida Statutes, and Chapter 62-761 or 62-762, Florida Administrative Code (Fla. Admin. Code) was observed. Please see the attached inspection report for a full account of County observations and recommendations.

We request you review the item(s) of concern and respond in writing within 15 days of receipt of this Compliance Assistance Offer. Your written response should include one of the following:

- 1. Describe what has been done to resolve the non-compliance issue(s) or provide a schedule describing how/when the remaining issues will be addressed.
- 2. Provide the requested information, or information that mitigates the concerns or demonstrates them to be invalid.
- 3. Arrange for the inspector to visit your facility to discuss the item(s) of concern.



Mr. Rod Stitt Page 2 May 11, 2022

It is the Department's desire that you are able to adequately address the aforementioned issues so that this matter can be closed. Your failure to respond promptly may result in the initiation of formal enforcement proceedings.

Please address your response and any questions to Nereida Hernandez at (239) 252-8475 or by e-mail at <u>Nereida.Hernandez@CollierCountyFL.gov</u>.

Sincerely,

Nereida Hernandez Environmental Specialist Collier County Public Utilities Department Solid and Hazardous Waste Management Division

Enclosure: Inspection Report

cc: Oscar Villa (<u>OVilla@healthcareswfl.org</u>)



Solid & Hazardous Waste Management Division

May 31, 2022

Rod Stitt RStitt@healthcareswfl.org

## RE: Return to Compliance Letter Collier Health Services 1454 Madison Ave W Immokalee, FL 34142 DEP Facility # 11/9818091

Collier County - Storage Tanks

Dear Mr. Stitt:

Collier County Solid and Hazardous Waste Management Division (SHWMD), on behalf of the Florida Department of Environmental Protection, personnel issued a Compliance Assistance Offer Letter to the above-referenced facility on May 11, 2022. Based on the information provided on May 31, 2022, the facility was determined to have returned to compliance with the Department's Storage Tank rules and regulations.

The Department appreciates your efforts to maintain this facility in compliance with state and federal rules. Should you have any questions please contact Nereida Hernandez at (239) 252-8475 or by e-mail at Nereida.Hernandez@CollierCountyFL.gov.

Sincerely,

Nereida Hernandez Environmental Specialist Collier County Public Utilities Department Solid and Hazardous Waste Management Division

cc: Oscar Villa (<u>OVilla@healthcareswfl.org</u>)



## **Facility Detailed List Report**

## Number of Facilities = 1

Facility Info														
Facility ID	County		Status		EPA ID			Other ID		Old Fac. ID		Follow Up		
16979	Collier		A - Active - Waste Generator		NA	NA			96020299		1104374		N - None Needed	
Facility Name	Mailing Address		Location Address		Contact			Title		Phone		E-mail Address		
Collier Health Services	1454 W Madison Ave Immokalee, FL 34142		1454 W Madison Ave Immokalee, 34142		Collier I Inc	Collier Health Services Inc		Owner		(239) 658-3000				
SIC Code	IC Code Gen Stat		Total HW Disposal		Data T	Data Type		Date		Org Contact		Org Code		
8011 - Services - Offices And Clinics Of Medical Doctors			0			V - Verification By On- Site Visit		2/13/2019 Edwar		Edward	d Tucker	11 - Collier		
Full-Time Employees	5			Facility Updated Date										
				2/13/2019	10:00:42 AM									
Waste Info														
Waste Type		Storage Method	Disp Metl	osal hod	Mo. (Units)	Max Mo	(Lbs)			posal ation	Que Stor	es rage	Ques Disposal	RCRA Hazardous
LDEB - Fluorescent Lamps/Devices		OG - Other Good	EE - Wast	Universal e	3 ( POUNDS )		3	36	Off-	Site	N		N	N
Activity Info														
Activity Type Description		Act		Return To Compliance Date										
Facility has no correspo	onding a	ctivity informatio	n.							-				

## **Facility Detailed List Report**

## Number of Facilities = 1

Facility In	ıfo										
Facility ID		County		Status	EPA I	D		Other ID	Old Fac. ID	Follow	Up
22964 Collier C		O - Out Of Business	· Out Of Business NA		0101- 5058		1110778	N - Non	e Needed		
Facility Name	9	Mailing Add	ress	Location Address Cor		nct	ct T		Phone	E-mail	Address
Marion Fether I Center			1454 Madison Ave, B Immokalee, 34142				() -				
SIC Code		Gen Stat		Total HW Disposal Dat		Туре		Date	Org Contac	t Org Co	de
			0		V - Verification By On- Site Visit		3/12/2019	Edward Tuck	er 11 - Col	lier	
Full-Time Employees				Facility Updated Date							
				3/12/2019 9:37:23 AM							
Comments:											
Comment Da	te	Comment									
3/12/2019		Entire Buildin	g Currently Collie	r Health Services.							
Waste In	fo										
Waste Type	Storag	ge Method Disposal Metho		od Mo. (Units)	Max Mo. (Lb		Disposal Location	Ques Storag	Ques Disposal	RCRA Haza	ardous
Facility has no	correspo	nding waste ir	nformation.								
Activity I	nfo										
Activity Type Description				Activity Date	Return To Compliance Date						
Facility has no	correspo	nding activity	information.								

Site 72 – Howard Fertilizer Spill

## Sellers, Robert

From:	Sellers, Robert <robert.sellers@floridadep.gov></robert.sellers@floridadep.gov>
Sent:	Wednesday, January 3, 2024 9:26 AM
То:	Victor San Agustin
Subject:	RE: Howard Fertilizer Corkscrew Spill Site, Site No. ERIC_15319

Good Morning Victor,

Your request for extension is approved with a new due date of March 18, 2024.

**Bob Sellers** 

Please let me know if you have any questions.

Environmental Specialist III Department of Environmental Protection Florida - Southwest District 13051 North Telecom Parkway, Suite 101

Temple Terrace, FL 33637 Office: 813-470-5761 Robert.sellers@floridadep.gov

From: Victor San Agustin <VSanAgustin@mdenv.com>
Sent: Tuesday, January 2, 2024 8:28 AM
To: Sellers, Robert <Robert.Sellers@FloridaDEP.gov>
Cc: Steve Smith <ssmith@howardfert.com>; Roger Pragle <rpragle@mdenv.com>; Briana Pragle
<BPragle@mdenv.com>; Weng, Randy <Randy.Weng@dot.state.fl.us>; Dwayne Collier <dcollier@howardfert.com>;
Benji Sikes <BSikes@Howardfert.com>
Subject: RE: Howard Fertilizer Corkscrew Spill Site, Site No. ERIC 15319

### **EXTERNAL MESSAGE**

This email originated outside of DEP. Please use caution when opening attachments, clicking links, or responding to this email.

Hello Robert,

This is a reminder to please follow up on my December 18 request below. Thanks for the help.

Victor L. San Agustin, P.E., C.H.M.M. Senior Engineer M&D Environmental Services, LLC 5896 Azalea Street Port Orange, FL 32127 M 813-842-5520 Email vsanagustin@mdenv.com



From: Victor San Agustin
Sent: Monday, December 18, 2023 9:28 AM
To: Sellers, Robert <<u>Robert.Sellers@FloridaDEP.gov</u>>
Cc: Steve Smith <<u>ssmith@howardfert.com</u>>; Roger Pragle <<u>rpragle@mdenv.com</u>>; Briana Pragle
<<u>BPragle@mdenv.com</u>>; Weng, Randy <<u>Randy.Weng@dot.state.fl.us</u>>; Dwayne Collier <<u>dcollier@howardfert.com</u>>;
Benji Sikes <<u>BSikes@Howardfert.com</u>>
Subject: RE: Howard Fertilizer Corkscrew Spill Site, Site No. ERIC_15319

Hello Robert:

On behalf of Howard Fertilizer & Chemical Company, Inc., this is to request another 90 day extension in which to remove 5,000 gal from each recover well located at the above referenced spill site.

Howard Fertilizer has taken on the task of removing the groundwater, approximately 500 gallons at a time. As of this email, per the attached manifests, 800 gal has been removed from the eastern recovery well and 1,000 gal from the western recovery well.

Assuming no delays, we expect to submit our site assessment report by Monday, 3/18/2024.

Victor L. San Agustin, P.E., C.H.M.M. Senior Engineer M&D Environmental Services, LLC 5896 Azalea Street Port Orange, FL 32127 M 813-842-5520 Email <u>vsanagustin@mdenv.com</u>



From: Sellers, Robert <<u>Robert.Sellers@FloridaDEP.gov</u>>
Sent: Tuesday, November 7, 2023 9:25 AM
To: Victor San Agustin <<u>VSanAgustin@mdenv.com</u>>
Cc: dpeterson@howardfert.com; Steve Smith <<u>ssmith@howardfert.com</u>>; Roger Pragle <<u>rpragle@mdenv.com</u>>; Briana
Pragle <<u>BPragle@mdenv.com</u>>; Weng, Randy <<u>Randy.Weng@dot.state.fl.us</u>>
Subject: RE: Howard Fertilizer Corkscrew Spill Site, Site No. ERIC_15319

Good Morning Victor,

Your request for extension is approved with a new due date of January 2, 2024.

Please contact me if you have any questions.



Bob Sellers

Environmental Specialist III Department of Environmental Protection Florida - Southwest District 13051 North Telecom Parkway, Suite 101 Temple Terrace, FL 33637 Office: 813-470-5761 Robert.sellers@floridadep.gov

From: Victor San Agustin <<u>VSanAgustin@mdenv.com</u>>
Sent: Thursday, November 2, 2023 3:10 PM
To: Sellers, Robert <<u>Robert.Sellers@FloridaDEP.gov</u>>
Cc: dpeterson@howardfert.com; Steve Smith <<u>ssmith@howardfert.com</u>>; Roger Pragle <<u>rpragle@mdenv.com</u>>; Briana
Pragle <<u>BPragle@mdenv.com</u>>; Weng, Randy <<u>Randy.Weng@dot.state.fl.us</u>>
Subject: RE: Howard Fertilizer Corkscrew Spill Site, Site No. ERIC_15319

## **EXTERNAL MESSAGE**

This email originated outside of DEP. Please use caution when opening attachments, clicking links, or responding to this email.

Hello Robert:

On behalf of Howard Fertilizer (Howard), this is to request a 45 day extension from the November 16, 2023 deadline in which to submit the site assessment report. We plan to submit the site assessment report by Tuesday, January 2, 2024. As of this email, we have not yet removed the complete 5,000 gallons from each recovery well. As of this email, 1,300 gallons of groundwater total was removed from the two recovery wells when both wells were installed last 9/6/23.

We have been having an issue complying with the 18 ft rule (18 ft distance required between the tanker and the concrete edge of the road) required by FDOT. Based on my discussions with Howard personnel, Howard is making arrangements with the adjacent property owners to allow Howard to park the tanker on private property so the tanker will be more than 18 ft from the edge of the road. Groundwater recharge is also poor in each recovery well. Howard is working on a system that will remove groundwater slowly without having to man the well during pumping.

Thank you for your consideration. If you have any questions, please call or email me.

Victor L. San Agustin, P.E., C.H.M.M. Senior Engineer M&D Environmental Services, LLC 5896 Azalea Street Port Orange, FL 32127 M 813-842-5520 Email <u>vsanagustin@mdenv.com</u>



From: Sellers, Robert <<u>Robert.Sellers@FloridaDEP.gov</u>>
Sent: Thursday, September 21, 2023 2:36 PM
To: Victor San Agustin <<u>VSanAgustin@mdenv.com</u>>
Subject: RE: Howard Fertilizer Corkscrew Spill Site, Site No. ERIC_15319

Hi Victor,

Thank you for the update. Let me know as we get closer to the deadline if you need an extension.

Bob

From: Victor San Agustin <<u>VSanAgustin@mdenv.com</u>>
Sent: Thursday, September 21, 2023 2:22 PM
To: Sellers, Robert <<u>Robert.Sellers@FloridaDEP.gov</u>>
Cc: dpeterson@howardfert.com; Roger Pragle <<u>rpragle@mdenv.com</u>>; Briana Pragle <<u>BPragle@mdenv.com</u>>; Weng,
Randy <<u>Randy.Weng@dot.state.fl.us</u>>
Subject: Howard Fertilizer Corkscrew Spill Site, Site No. ERIC_15319

## **EXTERNAL MESSAGE**

This email originated outside of DEP. Please use caution when opening attachments, clicking links, or responding to this email.

Hello Robert,

A site reconnaissance by Howard Fertilizer personnel yesterday, Sept. 19 shows high ditch water levels in the area of the recovery wells. See attached pics. A parked mobile tanker will not be able to park safely to comply with FDOT's 18 ft rule (18 ft distance between tanker and edge of road). One side of the tanker will have to park in the ditch water (not safe) if groundwater is to be removed from each recovery well at this time.

On behalf of Howard Fertilizer, we recommend waiting for the ditch water levels to subside before parking a tanker at the spill site to receive groundwater. We may need an extension from the November 16 deadline noted in your email below depending on how soon the ditch water subsides so the tanker can park safely and receive groundwater in compliance with FDOT requirements. I will keep you posted.

Victor L. San Agustin, P.E., C.H.M.M. Senior Engineer M&D Environmental Services, LLC 5896 Azalea Street par Port Orange, FL 32127 M 813-842-5520 Email vsanagustin@mdenv.com



From: Sellers, Robert <<u>Robert.Sellers@FloridaDEP.gov</u>>
Sent: Tuesday, September 12, 2023 12:28 PM
To: Victor San Agustin <<u>VSanAgustin@mdenv.com</u>>
Subject: RE: OSP - Permit # 2023-K-192-00032 - FDOT Permit Approved

Good Afternoon Victor,

Your request for extension is approved with a new due date of November 16, 2023.



## **Bob Sellers**

**Environmental Specialist III** 

Department of Environmental Protection Florida - Southwest District 13051 North Telecom Parkway, Suite 101 Temple Terrace, FL 33637 Office: 813-470-5761 <u>Robert.sellers@floridadep.gov</u>

From: Victor San Agustin <<u>VSanAgustin@mdenv.com</u>>
Sent: Tuesday, September 12, 2023 9:58 AM
To: Sellers, Robert <<u>Robert.Sellers@FloridaDEP.gov</u>>
Cc: dpeterson@howardfert.com; Roger Pragle <<u>rpragle@mdenv.com</u>>; Briana Pragle <<u>BPragle@mdenv.com</u>>; Weng,
Randy <<u>Randy.Weng@dot.state.fl.us</u>>
Subject: RE: OSP – Permit # 2023-K-192-00032 - FDOT Permit Approved

## **EXTERNAL MESSAGE**

This email originated outside of DEP. Please use caution when opening attachments, clicking links, or responding to this email.

Hello Robert:

On behalf of Howard Fertilizer, this is to request a 30 day extension from 10/16/23 to 11/16/23 in which to submit the report.

The additional time is requested to pump approximately 5,000 gal of groundwater from each recovery well. The recovery wells were installed last 9/6/23.

The vac truck was vacuuming groundwater much faster than the recovery well to recharge groundwater. We have to set up a smaller pump and tank onsite to remove groundwater and obtain FDOT approval if needed.

Thanks for considering. Any questions, please call or email.

Victor L. San Agustin, P.E., C.H.M.M. Senior Engineer M&D Environmental Services, LLC 5896 Azalea Street Port Orange, FL 32127 M 813-842-5520 Email <u>vsanagustin@mdenv.com</u>



From: Sellers, Robert <<u>Robert.Sellers@FloridaDEP.gov</u>>
Sent: Thursday, August 31, 2023 9:44 AM
To: Victor San Agustin <<u>VSanAgustin@mdenv.com</u>>
Subject: RE: OSP - Permit # 2023-K-192-00032 - FDOT Permit Approved

Good Morning Victor,

Your request for an extension of time to submit the report is approved. The new due date is October 16, 2023.



## Bob Sellers

Environmental Specialist III Department of Environmental Protection Florida - Southwest District 13051 North Telecom Parkway, Suite 101 Temple Terrace, FL 33637 Office: 813-470-5761 Robert.sellers@floridadep.gov

From: Victor San Agustin <<u>VSanAgustin@mdenv.com</u>>
Sent: Thursday, August 31, 2023 9:31 AM
To: Sellers, Robert <<u>Robert.Sellers@FloridaDEP.gov</u>>
Cc: dpeterson@howardfert.com; Randy Conrad <<u>rconrad@teamues.com</u>>; Roger Pragle <<u>rpragle@mdenv.com</u>>; Briana
Pragle <<u>BPragle@mdenv.com</u>>
Subject: RE: OSP – Permit # 2023-K-192-00032 - FDOT Permit Approved

## **EXTERNAL MESSAGE**

This email originated outside of DEP. Please use caution when opening attachments, clicking links, or responding to this email.

Hello Robert:

This is to request the report submittal date be moved from 9/30/2023 to 10/16/23, a Monday. The drill date had to be moved from 8/22/2023 to 9/6/23, approximately 15 days due to a delay in issuance of the drilling permit by Collier County Health Dept.

Thanks for the help. Any questions, please call or email.

Victor L. San Agustin, P.E., C.H.M.M. Senior Engineer M&D Environmental Services, LLC 5896 Azalea Street Port Orange, FL 32127 M 813-842-5520 Email <u>vsanagustin@mdenv.com</u>



From: Sellers, Robert <<u>Robert.Sellers@FloridaDEP.gov</u>>
Sent: Monday, July 10, 2023 9:09 AM
To: Victor San Agustin <<u>VSanAgustin@mdenv.com</u>>
Subject: RE: OSP - Permit # 2023-K-192-00032 - FDOT Permit Approved

Good Morning Victor,

Thank you for the update. The report was due July 31, but due to scheduling difficulties with the drilling contractor, your request for extension is approved with a new due date of September 30, 2023.



Bob Sellers

Environmental Specialist III Department of Environmental Protection Florida - Southwest District 13051 North Telecom Parkway, Suite 101 Temple Terrace, FL 33637 Office: 813-470-5761 Robert.sellers@floridadep.gov From: Victor San Agustin <<u>VSanAgustin@mdenv.com</u>>
Sent: Friday, July 7, 2023 8:43 AM
To: Sellers, Robert <<u>Robert.Sellers@FloridaDEP.gov</u>>
Cc: dpeterson@howardfert.com; Briana Pragle <<u>BPragle@mdenv.com</u>>; Roger Pragle <<u>rpragle@mdenv.com</u>>; Randy
Conrad <<u>rconrad@teamues.com</u>>
Subject: RE: OSP – Permit # 2023-K-192-00032 - FDOT Permit Approved

### **EXTERNAL MESSAGE**

This email originated outside of DEP. Please use caution when opening attachments, clicking links, or responding to this email.

Hello Robert,

Just touching base, on behalf of Howard Fertilizer, based on a recovery well installation date of August 22, 2023 as scheduled by the drilling contractor below, then sampling to be conducted subsequently, we plan to submit the written report by Sept 30, 2023.

If you have any questions or concerns, please call or email.

Victor L. San Agustin, P.E., C.H.M.M. Senior Engineer M&D Environmental Services, LLC 5896 Azalea Street Port Orange, FL 32127 M 813-842-5520 Email <u>vsanagustin@mdenv.com</u>



From: Victor San Agustin
Sent: Tuesday, June 27, 2023 10:19 AM
To: Sellers, Robert <<u>Robert.Sellers@FloridaDEP.gov</u>>
Cc: dpeterson@howardfert.com; Briana Pragle <<u>BPragle@mdenv.com</u>>; Roger Pragle <<u>rpragle@mdenv.com</u>>
Subject: FW: OSP - Permit # 2023-K-192-00032 - FDOT Permit Approved

Hello Robert:

FYI below from the drilling contractor. Will keep you posted.

Victor L. San Agustin, P.E., C.H.M.M. Senior Engineer M&D Environmental Services, LLC 5896 Azalea Street Port Orange, FL 32127 M 813-842-5520 Email <u>vsanagustin@mdenv.com</u>



From: Randy Conrad <rconrad@teamues.com>
Sent: Tuesday, June 27, 2023 10:05 AM
To: Victor San Agustin <<u>VSanAgustin@mdenv.com</u>>
Cc: Briana Pragle <<u>BPragle@mdenv.com</u>>; Roger Pragle <<u>rpragle@mdenv.com</u>>
Subject: RE: OSP - Permit # 2023-K-192-00032 - FDOT Permit Approved

Victor,

I have you on the schedule for August 21st and 22nd. I will be contacting you to make sure I have all the information to pull permits.

Randy Conrad National Business Development GEO Exploration

1818 7th Avenue North, Unit 1 Lake Worth, FL 33461 f (561) 395-5805 | c (954) 347-1266



From: Victor San Agustin <<u>VSanAgustin@mdenv.com</u>>
Sent: Tuesday, June 27, 2023 9:01 AM
To: Randy Conrad <<u>rconrad@teamues.com</u>>
Cc: Briana Pragle <<u>BPragle@mdenv.com</u>>; Roger Pragle <<u>rpragle@mdenv.com</u>>
Subject: RE: OSP - Permit # 2023-K-192-00032 - FDOT Permit Approved

This Message Is From an External Sender

This message came from outside your organization.

Randy,

Please advise regarding my June 26 request below. I would also like to set up the 4 drums to collect drill cuttings inside a trailer so the drums can leave the same day. Please call to discuss.

Victor L. San Agustin, P.E., C.H.M.M. Senior Engineer M&D Environmental Services, LLC 5896 Azalea Street Port Orange, FL 32127 M 813-842-5520 Email <u>vsanagustin@mdenv.com</u>



From: Victor San Agustin
Sent: Monday, June 26, 2023 9:52 AM
To: Randy Conrad <<u>rconrad@teamues.com</u>>
Cc: Briana Pragle <<u>BPragle@mdenv.com</u>>; Roger Pragle <<u>rpragle@mdenv.com</u>>
Subject: FW: OSP - Permit # 2023-K-192-00032 - FDOT Permit Approved

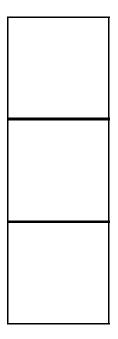
Hello Randy,

FYI below. Please click on the link to download the approval package. Can you please advise what is a good day for you to install the two recovery wells? Please advise. Thanks for the help.

Victor L. San Agustin, P.E., C.H.M.M. Senior Engineer M&D Environmental Services, LLC 5896 Azalea Street Port Orange, FL 32127 M 813-842-5520 Email <u>vsanagustin@mdenv.com</u>



From: donotreplyapps@dot.state.fl.us <donotreplyapps@dot.state.fl.us> Sent: Thursday, June 22, 2023 3:31 PM To: Victor San Agustin <<u>VSanAgustin@mdenv.com</u>> Subject: OSP – Permit # 2023-K-192-00032 - Permit Approved


FDOT has approved Permit # 2023-K-192-00032 | Project Name: "SR29 Recovery Well / Monitoring Well".

You may log in to <u>One-Stop Permitting</u> to view your approved permit package.

Click here to download the approved package.

Comments:

Please do not reply to this email. Replies to this email will not be monitored or responded to.





M&D Environmental Services, LLC 5896 Azalea Street Port Orange, FL 32127



March 21, 2023

Elianna Florido Florida Department of Environmental Protection 13051 Telecom Parkway N Temple Terrace, FL 33637

Subject: Interim Source Removal Proposal - Howard Fertilizer Spill Site; ½ Mile South of SR-82 and SR-29, Corkscrew, Collier County, FL 34142 FDEP Site # ERIC_15319

Dear Ms. Florido:

Thank you for your February 14, 2023 email. On behalf of Howard Fertilizer and Chemical Company, Inc., this document shall serve as our Interim Source Removal (ISR) Proposal for the above referenced site.

Our ISR proposal includes installing two groundwater recovery wells on each side of the road way. A layout showing the recovery well locations is enclosed as Figure 1. Each recovery well will be 4 inches diameter, will be approximately 30 ft-BLS with a well screen of 15 feet located at the well bottom. Prior approval will be obtained from Florida Department of Transportation (FDOT) in order to install the recovery wells on the FDOT right of way and remove groundwater. Well permits will also be obtained from Collier County Health Department prior to installation.

Approximately 5,000 gallons will be removed from each recovery well and then transported offsite for proper disposal. Temporary monitor wells TMW-W, TMW-E, and TMW-B will be sampled for Manganese, Iron, and Arsenic shortly after groundwater removal. A written report documenting source removal work, lab results, and follow up recommendations will be submitted to your office within 45 days of sampling.

Department approval of this ISR proposal is requested. If you have any questions, please call me at 813-842-5520 or email me at <u>vsanagustin@mdenv.com</u>.

Sincerely,

**M&D** Environmental Services, LLC

Victor L. San Agustin, P.E., C.H.M.M. Senior Engineer vsa



# TMW-W-

RW-W-



# TMW-B+



From:	Victor San Agustin
То:	<u>Kiyali, Serge; Angulo, Yanisa</u>
Cc:	Doug Peterson; Roger Pragle; Briana Pragle
Subject:	RE: Howard Fertilizer-ERIC_15319, Corkscrew Spill Site, Collier County
Date:	Wednesday, September 14, 2022 9:10:35 AM
Attachments:	image002.png
	image006.png
	SAR FDEP 9-14-2022.pdf

## **EXTERNAL MESSAGE**

## This email originated outside of DEP. Please use caution when opening attachments, clicking links, or responding to this email.

Hello Serge:

Attached is the requested Site Assessment Report for the samplings conducted in July and Sept, 2022.

If you have any questions, please call or email.

Victor L. San Agustin, P.E., C.H.M.M. Senior Engineer M & D Industrial Services, LLC 5896 Azalea Street Port Orange, FL 32127 Land 386-238-9658 Cell 813-842-5520 Email – <u>vsanagustin@mdindustrialservices.com</u> Website – <u>www.mdindustrialservices.com</u>



From: Kiyali, Serge <Serge.Kiyali@FloridaDEP.gov>
Sent: Wednesday, August 31, 2022 3:57 PM
To: Victor San Agustin <VSanAgustin@mdindustrialservices.com>; Angulo, Yanisa
<Yanisa.Angulo@FloridaDEP.gov>
Cc: Doug Peterson <dpeterson@howardfert.com>; Roger Pragle
<rpragle@mdindustrialservices.com>; Briana Pragle <bpragle@mdindustrialservices.com>
Subject: RE: Howard Fertilizer-ERIC_15319, Corkscrew Spill Site, Collier County



SITE ASSESSMENT REPORT Oct, 2019 Roadside Fertilizer Spill ½ Mile South of SR-29 and SR-82 Roundabout Corkscrew, Collier County, Florida 34142 FDEP OER Report No. OHMIT #2019-3I-64280Z

## prepared for

Howard Fertilizer and Chemical Company, Inc. 8306 South Orange Avenue Orlando, FL 32809

## prepared by

M & D Industrial Services, LLC 5896 Azalea Street Port Orange, Florida 32127

**September 14, 2022** 

## **Table of Contents**

1.0	Introduction	3
2.0	Summary of Findings / Recommendations	3
3.0	Certification by Responsible Authority	5
4.0	Figures	
	Figure 1 – Location of Spill Site Figure 2 – Soil, Sediment, Groundwater, Surface Water Sample Locations Figure 3 – Direction of Groundwater Flow	

## 5.0 Tables

- Table 1 Summary of Soil Lab Data
- Table 2 Summary of Groundwater Lab Data
- Table 3 Summary of Surface Water Lab Data
- Table 4 Monitor Well Water Levels

## 6.0 Attachments

- Attachment 1 July 20, 2021 Email from FDEP
- Attachment 2 Construction Logs for Replacement Temporary Monitor Wells
- Attachment 3 Monitor Well Sampling Logs
- Attachment 4 Lab Reports
- Attachment 5 Material Data Sheet of Spilled Fertilizer
  - & Arsenic Content in Plant Water

## 1.0 Introduction

On behalf of Howard Fertilizer & Chemical Company, Inc., this report serves as a follow up to the recommendations made in the previous Site Assessment Report (SAR) dated 3-10-2021. FDEP personnel concurred with M&D's recommendations as shown in a July 20, 2021 email from Morgan Popidinski, FDEP-South District, attached as Attachment 1.

Temporary monitor wells TMW-W and TMW-E were destroyed as reported in M&D's 3-10-2021 site assessment report. M&D recommended and FDEP concurred with reinstalling the two temporary monitor wells after completion of road construction. Road construction of the roundabout located at SR-82 and SR-29 was completed approximately in May, 2022. Construction activities included road construction work at the spill site. **Figure 1** shows the spill site location's proximity to the roundabout.

M&D personnel conducted a site survey on 5/25/2022 and confirmed that temporary monitor wells TMW-W and TMW-E can still be installed in the same locations. FDOT required a General Use permit prior to installing the temporary wells. M&D applied for the General Use permit on 6-24-2022. FDOT issued General Use permit 2022-K-192-00025 allowing M&D to install the temporary monitor wells. The two (2) temporary wells were installed on 6-29-2022. The monitor well construction logs are enclosed in **Attachment 2**. Monitor well TMW-B was still in tact and not damaged on the date of sampling.

Sampling of the two (2) replacement temporary monitor wells was conducted on 7-20-22. The monitor well sampling logs are enclosed in **Attachment 3**. Water levels and GPS coordinates of the 3 temporary wells were also recorded and are presented in **Table 4**. Based on the recorded water levels, direction of groundwater flow is towards the NNE and is presented in **Figure 3**. All other sampling as recommended in the 3-10-2021 site assessment report was also conducted the same day. All other sampling included sampling of sediment at Ditchwater-B and sediment near Soil B.

All samples were delivered to SGS Labs in Orlando for lab analysis same day, July 20, 2022. The SGS Lab report was issued on 7/27/2022 and is enclosed as **Attachment 4**. The West Ditch Surface Water was sampled on 9/1/2022. The SGS lab report was issued on 9/12/2022 and is also enclosed in **Attachment 4**.

## 2.0 Summary of Findings / Recommendations

**Table 1** shows all soil and sediment sampling results conducted to date including the results from the July 20, 2022 sediment samples. All sample locations to date are shown in **Figure 2**. Arsenic in the sediment sample next to Soil-B was 0.87 mg/kg. Arsenic in the Ditchwater-B was 0.26 I. As documented in M&D's 1-31-2020 SAR in Attachment 5, a 12/14/2019 lab sample pulled from the plant water used to make the spilled fertilizer has an arsenic content of 0.017 ppm. The material data sheet for the spilled fertilizer, Gator Excel CSL 7 shows no additional arsenic present.

Arsenic levels of 3.4 mg/kg and 5.7 mg/kg are shown in the sediment samples pulled last 10/14/2019 and 1/20/2021 respectively for the West Ditch Sediments. Based on the arsenic

content of less than 0.017 ppm in the spilled fertilizer, M&D believes the spilled fertilizer could not be the source of these arsenic levels. M&D also believes the 2.1 mg/kg residential SCTL for arsenic applies to soil and not to sediment. M&D requests Department guidance regarding an applicable cleanup target level for sediment in stormwater ditches.

**Table 2.0** – Groundwater Data, shows an arsenic level of 17.2 ug/l in TMW-W. M&D believes this arsenic contamination may be from the same source that caused elevated arsenic levels in the West Ditch Sediments.

**Table 2.0** also shows the 7/20/22 samples pulled from temporary monitor wells TMW-W ( R ) and TMW-E( R ) have manganese and iron levels are above their respective FDEP groundwater cleanup target levels.

Based on the iron level in background monitor well TMW-B, M&D believes the iron levels may be from another source or is naturally occurring. However, based on the iron content of the spilled fertilizer of 3.5%, the elevated iron in the groundwater sample from well TMW-W may still be attributed to the spilled fertilizer.

Elevated manganese levels in the groundwater may also be attributed to the spilled fertilizer. M&D recommends installation of additional temporary monitor wells to delineate horizontal and vertical extent of manganese contamination in the groundwater.

**Table 3** – Surface Water Data includes the lab result from the West Ditch Surface Water pulled last 9/1/2022. Iron in the West Ditch Surface Water sample was 698.0 ug/lit, above the background level of 171 I ug/lit. M&D recommends continuing to monitor, sample, and lab-analyze the West Ditch Surface Water for Iron while the horizontal and vertical extent of manganese contamination in the groundwater is being assessed.. Although iron is present in the spilled fertilizer, other sources of iron in the surface water may be present including naturally occurring iron and surrounding farmland.

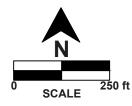
#### 3.0 Certification by Responsible Authority:

I certify under penalty of law that this document and all attachments were prepared under my direction *or* supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

9/12/22 Doug Peterson

Compliance Officer Howard Fertilizer & Chemical Company, Inc. 8306 South Orange Avenue Orlando, FL 32809

Victor L. San Agustin 9-12-22


Victor L. San Agustin, P.E., C.H.M.M. Date Florida Professional Engineer No. 40226 M & D Industrial Services, LLC. 5896 Azalea Street Port Orange, FL 32127



September 14, 2022 Page 5 of 5 Project No. E0091

4.0 Figures





HOWARD FERTILIZER & CHEMICAL CO. Spill Site - Approx 1/2 Mile South of SR82 and SR29 Corkscrew, Collier County, FL 34142

Location of Spill Site

PROJECT NO.:	E0091	

DATE:

FIGURE 1 Jan 22, 2020

M&D INDUSTRIAL SERVICES, LLC.

5896 Azalea Street Port Orange, FL 32127

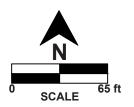
www.mdindustrialservices.com

Ditch Water-

# Sediment a **Ditchwater-B**



# West Ditch Water and Sediment


MW-W-West Soil



East Soil

# TMW-B-🔶

# Sediment Near Soil-B $\bigcirc$

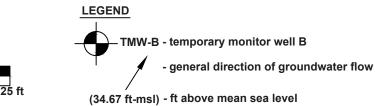


NOTES/LEGEND:

1. West Ditch Water was sampled on 9/1/22. Other magenta sample locations were sampled on 7/20/22.

B

- Yellow sample locations were sampled previously.
   See Tables 1, 2, and 3 for all sample results.
- -- Temporary monitor well
- -soil or sediment or ditch water sample. See ID's above.


HOWARD FERTILIZER & CHEMICAL CO. Spill Site - Approx 1/2 Mile South of SR82 and SR29 Corkscrew, Collier County, FL 34142

Sam	ple Locations
OJECT NO.: E0091	FIGURE 2
ATE: Aug 31, 2022	
M&D IN	DUSTRIAL SERVICES, LLC.
5896 Azalea Stree Port Orange, FL	

TMW-E (34.209 ft-msl)







SCALE

HOWARD FERTILIZER & CHEMICAL CO. Spill Site - Approx 1/2 Mile South of SR82 and SR29 Corkscrew, Collier County, FL 34142

Groundwater Elevations & Direction of Groundwater Flow



M&D INDUSTRIAL SERVICES, LLC 5896 Azalea Street Port Orange, FL 32127 www.mdindustrialservices.c

5.0 Tables

#### Table 1 - Summary of Soil and Sediment Lab Data Howard Fertilizer Spill Site Approx 1/2 Mile south of SR-29 & SR-82 Roundabout, Corkscrew, Collier County

	Sample	Arsenic (mg/kg)	Beryllium	Boron (mg/kg)		Chromium (mg/kg)	Copper (mg/kg)	Fluoride	Iron (mg/kg)	Lead	Manganese	Molybdenum	Nickel	Sodium	Uranium
	Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Background Soil	10/14/2019	0.56	0.033 I	1.7 U	0.024 U	2.1	1.2	1.4 U	859	5.1	2.0	0.024 U	0.53 I	24 U	ND
Sediment Next to Soil B	7/20/2022	0.87													
West Soil, 0-1 ft BLS	10/14/2019	2.1	0.039 I	53.1	0.021 U	2.5	1.9	3.0 I	2,050.0	20.6	9.4	0.081 I	0.78 I	36.6 I	ND
West Soil, 1-2 ft BLS	10/14/2019	1.2	0.028 U	1.9 U	0.028 U	1.5	3.8	1.5 U	1,030.0	4.8	42.6	0.32 I	0.62 I	38.5 I	9.31
West Ditch Sediments	10/14/2019	3.4	0.21 I	4.3 U	0.061 I	10.3	22.2	3.7 U	4,770.0	8.1	292	0.39 I	3.8 I	232 I	9.47 J
	1/20/2021	5.7													
East Soil, 0-1 ft BLS	10/14/2019	0.51	0.051 I	10.9 I	0.067 I	5.8	9.6	1.4 U	1,300.0	19.8	249	0.27 I	2.8	70.8 I	3.87 J
East Soil, 1-2 ft BLS	10/14/2019	0.13 I	0.026 U	1.7 U	0.026 U	0.20 I	0.094 I	1.4 U	134.0	0.21 I	0.26 I	0.026 U	0.073 I	26.0 U	1.84 J
East Ditch Sediments	10/14/2019	2.2	0.12 I	10.2 I	0.14 I	12.0	77.1	8.1 I	2,010.0	27.2	36.2	0.73 I	3.2 I	207 I	10.8 J
	1/20/2021	0.91													
Ditch Water B Sedimentt	7/20/2022	0.26 I													
<b>Residential SCTL</b>		2.1	120.0	17,000.0	82.0	210.0	150.0	840.0	53,000.0	400.0	3,500.0	440.0	340.0		110.0
Industrial SCTL		12.0	1,400.0	430,000.0	1,700.0	470.0	89,000.0	130,000.0	*	1,400.0	43,000.0	11,000.0	35,000.0		820.0
Alternate SCTL														20,000.00	
Leachability SCTL		***	63.0	***	7.5	38.0	***	6,000.0	***	***	***	***	130	320,000.00	***

* Contaminant is not a health concern for this exposure scenario.

*** Leachability values may be derived using the SPLP Test to calculate site specific SCTLs or may be determined using TCLP in the event oily wastes are present.

Zinc (mg/kg)	Nitrogen, Ammonia (mg/kg)	Nitrogen, Nitrate (mg/kg)	Nitrogen, Nitrite (mg/kg)	Sulfate (mg/kg)
3.2	30.5	2.8 U	2.8 U	34.0 U
10.2	69.9	2.8 U	2.8 U	252.0
49.6	15	3.0 U	3.0 U	440.0
362.0	276.0	7.4 U	7.4 U	1,190.0
276.0	183.0	10.8	2.9 U	1,240.0
0.22 I	17.5	3.6 I	2.9 U	34.0 U
48.4	24.6	10.0 U	10.0 U	120 0 U
26.000.0	35.000.0	140.000.0	8.700.0	

0.0	26,000.0	35,000.0	140,000.0	8,700.0	
0.0	630,000.0	880,000.0	*	220,000.0	
					2,200.00
	***	***	***	***	None

 Table 2 - Summary of Groundwater Lab Data

 Corkscrew Spill Site

 Approx. 1/2 Mile South of SR29 and SR82, Corkscrew, Collier County

	Sample Date	Arsenic (ug/l)	Beryllium (ug/l)	Boron * (ug/l)	Cadmium (ug/l)	Chromium (ug/l)	Copper (ug/l)	Fluoride (ug/l)	Iron (ug/l)	Lead (ug/l)	Manganese (ug/l)	Molybdenum (ug/l)	Nickel (ug/l)	Sodium (ug/l)	Uranium (ug/l)	Zinc (ug/l)	Nitrogen, Ammonia (ug/l)	Nitrogen, Nitrate (ug/l)	Nitrogen, Nitrite (ug/l)	Sulfate (ug/l)
TMW-W	10/31/2019	14.2	0.20 U	291.0	0.20 U	2.0 I	1.0 U	560.0 I	12,900.0	9.8	55.1	4.1 IB	26.2 I	28,000.0	10.3 J	54.8	1,800.0	250 U	250 U	43,600.0
TMW-W(R)	7/20/2022	17.2							3,520.0		189.0									
TMW-E	10/31/2019	1.3 U	0.20 U	63.0 U	0.20 U	1.8 I	1.0 U	260	864.0	4.6 I	106.0	3.6 IB	0.40 U	2,270 I	10.3 J	42.7	170 I	50.0 U	50.0 U	8,100.0
TMW-E(R)	7/20/2022	2.1 I							2,100.0		6,600.0									
TMW-B	10/31/2019	1.3 U	0.20 U	74.1 I	0.20 U	2.3 I	1.0 U	470.0	4,170.0	4.6 I	28.9	0.90 IB	0.40 U	23,800.0	8.78 U	4.4 U	500.0	50.0 U	50.0 U	5,000.0
GCTL		10.0	4.0	None	5.00	100.0	1,000.0	4000.0	300.0	15.0	50.0	None	100.0	160,000.0	30.0	5,000.0	None	10,000.0	1,000.0	250,000.0

# Table 3 - Summary of Surface Water Lab Data Corkscrew Spill Site Approx. 1/2 Mile South of SR29 and SR82, Corkscrew, Collier County

	Sample Date	Arsenic (ug/l)	Beryllium (ug/l)	Boron * (ug/l)	Cadmium (ug/l)	Chromium (ug/l)	Copper (ug/l)	Fluoride (ug/l)	Iron (ug/l)	Lead (ug/l)	Manganese (ug/l)	Molybdenum (ug/l)	Nickel (ug/l)	Sodium (ug/l)	Uranium (ug/l)	Zinc (ug/l)	Nitrogen, Ammonia (ug/l)	Nitrogen, Nitrate (ug/l)	Nitrogen, Nitrite (ug/l)	Sulfate (ug/l)
West Ditch Water	10/14/2019 1/20/2021 9/1/2022	3.2 I	0.20 U	367.0	0.20 U	1.3 I	1.8 I 6.6 I	0.30 U	2,240.0 1,350.0 698.0	1.1 U	462.0	2.1 I	10.6 I	22,500.0	14.5	65.0	0.28	0.25 U	0.25 U	23.6
East Ditch Water	10/14/2019 1/20/2021	5.1 I	0.20 U	63.0 U	0.20 U	1.0 U	<b>29.5</b> 1.8 I	0.30 U	4,160.0 170 I (Note 8)	1.1 U	1,460.0	0.30 U	0.90 I	27,300.0	15.4	54.8	0.060 U	0.25 U	0.25 U	3.0 U
Northeast Ditch Water	10/31/2019	2.9 I	0.20 U	75.9 I	0.20 U	1.0 U	1.0 U	280	171 I (Note 8)	4.0 I	45.7	0.30 U	0.40 U	13,200.0	2.96 U	5.6 I	62.0 I	260	50 U	5,600.0
Class III Surface Water St	andard	50.0	0.1	None	0.10	11.0	2.9	10.0	1.0	0.5	None	None	16.1	None	None	37.0	310.6	None	None	None
Class III West Ditch Wate Class III East Ditch Water Note 1 - Cd is 0.1 if hardnes	Surface Wate	er Standaro	d	is set at 400	or 0.76 0.58 0.56 (Note 1) 0.0 mg/l. Lab	(Note 2) report fa6897:	or 30.5 23.5 19.1 (Note 3) 3R shows W	est Ditch wa	ter hardness to	or 18.6 11.6 11.0 (Note 4) ested 277 m	g/l and East Dit	ch water hardness	or 168.5 123.5 119.0 (Note 5) s tested 265 r	ng/l.		or 387.8 284.1 273.6 (Note 6)				
Note 2 - Applies to hexavale	nt chromium															Temp deg (	28.0			

pН

7.15

(Note 7)

Note 3 - Cu is 2.9 if hardness is set at 25 mg/l. Cu is 30.5 if hardness is set at 400 mg/lit. Lab report FA82481 shows West Ditch water hardness tested 295 mg/l and East Ditch water hardness tested 231 mg/l.

Note 4 - Pb is 0.5 if hardness is set at 25 mg/l. Pb is 18.6 if hardness is set at 400 mg/lit. Lab report fa68973R shows West Ditch water hardness tested 277 mg/l and East Ditch water hardness tested 265 mg/l.

Note 5 - Ni is 16.1 if hardness is set at 25 mg/l. Ni is 168.5 if hardness is set at 400 mg/lit. Lab report fa68973R shows West Ditch water hardness tested 277 mg/l and East Ditch water hardness tested 265 mg/l.

Note 6 - Zinc is 37.0 if hardness is set at 25 mg/l. Zinc is 387.8 if hardness is set at 400 mg/lit. Lab report fa68973R shows West Ditch water hardness tested 277 mg/l and East Ditch water hardness tested 265 mg/l.

Note 7 - Lab report fa68973R shows pH of West Ditch water sample was 7.15 and pH of East Ditch water sample was 7.36. Nitrogen, Ammonia standard shown is based on a pH of 7.15

Note 8 - Lab result is below the the lab Practical Quantitative Limit (PQL) of 300 ug/lit.

### Table 4 - Monitor Well Water Levels Howard Fertilizer - Corkscrew Spill Site on SR29 Est 1/2 Mile South of SR-82 and SR-29 Roundabout Corkscrew, Florida

Well ID	TMW-B	TMW-W	TMW-E
Northing Coordinate	779612.417	779909.701	779898.882
Easting Coordinate	513981.255	513977.402	514059.489
Inside Diameter	2 in	2 in	2 in
Top of Casing Elevation (ft)	36.89	38.697	38.109
Depth to Water (ft)	2.22	4.52	3.9
Total Depth (ft)	5.29'	5.30'	5.03'
Water Elevation (ft)	34.67	34.177	34.209

6.0 Attachments

Attachment 1 – July 20, 2021 Email from FDEP South District

#### **Victor San Agustin**

From:	Popidinski, Morgan < Morgan.Popidinski@FloridaDEP.gov>
Sent:	Tuesday, July 20, 2021 11:01 AM
То:	VSanAgustin@mdindustrialservices.com
Cc:	Hardman, Natalie; Maier, Gary
Subject:	SAR Response, Howard Fertilizer, ERIC_15319

Victor San Agustin, M&D Industrial Services, LLC., VSanAgustin@mdindustrialservices.com

RE: Site Assessment Report Howard Fertilizer Road Spill ½ Mile South of SR-29 and SR-82 Immokalee, Collier County, FL FDEP Facility ID# ERIC_15319

Dear Mr. San Agustin:

Thank you for submitting the above-referenced report dated March 10, 2021.

The Department has completed its technical review of this report. Sediment and surface water samples were collected from the East and West Ditches as well as a background surface water sample from Ditch Water-B. Sediment samples were analyzed for Arsenic and Surface Water samples were analyzed for Copper and Iron. Based on laboratory analytical results, elevated levels of Arsenic in the sediment samples and Iron in the West Ditch Water were identified. Based on the background surface water collected, the sample collected from the East Ditch Water was below the background level. M&D has made the following recommendations:

- M&D has recommended discontinuation of soil sampling. Additionally, discontinuation of surface water sampling for copper. The Department has no objection to these recommendations.
- During road construction activities at the site, TMW-E and TMW-W were destroyed. As such, groundwater sampling was unable to be performed. M&D has recommended sampling from TMW-E, -W and -B following the completion of road construction. The Department has no objection to this recommendation.
- M&D has recommended another sampling event from the West Ditch Water for Iron. The Department has no objection to this recommendation.
- M&D has recommended performing background sediment samples at "Soil B" and Ditch Water B" for Arsenic in order to determine background Arsenic levels. The Department has no objection to this recommendation.

Whenever possible, please submit all written electronic response(s) to <u>FTM.Tanks.Cleanup@dep.state.fl.us</u>.

Kind regards,



Morgan Popidinski Environmental Specialist I South District Florida Department of Environmental Protection Morgan.Popidinski@FloridaDEP.gov Office: (239) 344-5706



Attachment 2 –

**Construction Logs for Replacement Temporary Monitor Wells** 

RECORD OF WE	LL DRILLI	NG, COI	NSTRUCT	ION, AN	D COM	PLETION
site idTMW-W(R)	STATION NAME	Howard Fo	ertilizer Corkscrew	OTHER ID	TMW-	W(R)
	COUNTY					
OWNER_Howard Fertilize						
WELL DRILLING						
START DRILLING:	DATE <u>06</u>	1 29 12	022 TIME	<u>11</u> :00	am EST	
COMPLETE DRILLING:	DATE <u>06</u>	<u>1 29</u> 12	022 TIME	<u>11</u> 20	am_EST	
EQUIPMENT/MATERIALS	DECONTAMIN	ATION PRO	OCEDURES:			
DETERGENT WASH	lconox/Water	; STEAM (	CLEANED	N/A	_; OTHE	R
DRILLING METHOD:						
_XAUGER (TYPE:	Hand Auger		_); F	ROTARY (TY	PE:	)
PERCUSSION (TYP	'Е:		);	OTHER		
BOREHOLE DATA:						
BOREHOLE DIAMETER: _	4.0	inches;	TOTAL DEPTI	H OF BOREH	OLE:	<u>4.00</u> feet;
APPROXIMATE DEPTH TO	THE WATER TA	BLE:	<u>1.0</u> fee	t		
MA	TERIAL DESCRIPT	ION	20	FROM	то	THICKNESS
SAND, SILT, CLAY ETC	SORTING	COLOR	WET/DRY	feet	feet	feet
Sand		Black	Dry	0	1.0	1.0
Sand	a 23	White	Wet	1.0	3.0	2.0
Sand		Brown	Wet	3.0	4.0	1.0
	19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -			e		
	69 2,8		a	6.5		
	96 - 59		37	1		
	8		0	÷ 1		
	50 5 kg		3	8 <u>5</u> 36		
	2 28		98 	94		3
						12.

Figure 8. Examples of forms used to record well-drilling, -construction, and -completion information, and to diagram well construction.

RECORD OF WEI	LL DRILLI	NG, CON	ISTRUCT	ION, AN	D COM	PLETION
SITE ID TMW-E(R)	STATION NAME	Howard Fe Spill Site-C		OTHER ID T	//W-East	964 V25
0.044467.0046	COUNTY _		200	i na sa		
OWNER_Howard Fertilizer					Monitor W	/ell by
WELL DRILLING						
START DRILLING:	DATE <u>06</u>	/ 29 / 20	22 TIME	<u>11 : 30</u>	<u>am</u> EST	
COMPLETE DRILLING:	DATE <u>06</u>	1 29 1 20	022 TIME	<u>11</u> :50	am EST	
EQUIPMENT/MATERIALS	DECONTAMIN	ATION PRO	CEDURES:			
DETERGENT WASH A	conox/Water	; STEAM C	LEANED	N/A	_; OTHE	RN/A
DRILLING METHOD:						
_X AUGER (TYPE: _	Hand Auger		_); F	ROTARY (TY	PE:	)
PERCUSSION (TYP				OTHER		();
BOREHOLE DATA:						
BOREHOLE DIAMETER:	4.0	inches;	TOTAL DEPTH	I OF BOREH	OLE:	4.5 feet;
APPROXIMATE DEPTH TO T			1.0 fee			
MAT	ERIAL DESCRIPTI		12. 12.	FROM	то	THICKNESS
SAND, SILT, CLAY ETC	SORTING	COLOR	WET/DRY	ket	feet	feet
Sand		Grey to Black	Dry	0	2.5	2.5
Sand	a 23	Black & White	Wet	2.5	4.0	1.5
Sand		Black	Wet	4.0	4.0	0.0
				4.5 2		
	10 10		2			
	-		-	-		
	- 10 - 2 M		1	4.5		-
	2 2		6	16 N		
			-			
	a 23					
						10

Figure 8. Examples of forms used to record well-drilling, -construction, and -completion information, and to diagram well construction.

Attachment 3 – Monitor Well Sampling Logs

#### DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

SITE	SITE SITE LOCATION: Approx 1/2 mile South of SR29 and SR82, Corkscrew,										
	TMW-W(F		pin	SAMPI	E ID: TM					-20-2022	,
WELL NO.		<b>'</b>		0/ 11/1		RGING DA	ТА		BRIE. 01	20 2022	
WELL		TUBIN			ELL SCREE	EN INTERVAL	STATIC	DEPTH		RGE PUMP TY	
DIAMETER WELL VOI	R (inches): 2 i	n DIAME	TER (inches): L <b>UME</b> = (TOT	3/8 DE	<u>ертн: 0</u> ртн – s	feet to 5.0 fee	t TO WA	TER (feet): 4.52		BAILER:	PP
(only fill ou	t if applicable)									10	
EQUIPME		URGE: 1 EQU	=( JIPMENT VOL	5.30 f	<u>eet – 4</u> DLUME + (T	UBING CAPACI	<u>x 0.16</u> ty x	gallons/foot TUBING LENGTH			gallons
(only fill ou	t if applicable)			= 0.01 a	allons + ( 0	).006 gallons/f	oot X 7	.0 feet) + 0.1	25 gallons	= 0.3 gallon	s
-	JMP OR TUBIN			IP OR TUBI	١G	PURGIN	G	PURGING	-	TOTAL VOLU	JME
DEPTH IN	WELL (feet):	5.0	DEPTH IN	WELL (feet):	5.0		ED AT: 0940	ENDED AT: DISSOLVED	1040	PURGED (ga	illons): 1.5
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standar units)		COND. (circle units) µmhos/cm or µS/cm	OYVGEN	TURBIDI (NTUs)		
0955	0.5	0.5	0.1	4.5	7.05	-	775	6.88	15.2		
1020	0.5	1.0	0.1	4.5	7.08		782	6.95	10.8		
1040	0.5	1.5	0.1	4.5	7.11	28.71	788	7.12	10.2	None	None
				_							
WELLCA	PACITY (Gallon	a Dar Faat):	<b>0.75</b> " - 0.02:	<b>1"</b> = 0.04;	1.25" = (	0.06; <b>2</b> " = 0.1	6: <b>3</b> " = 0.3	7; <b>4"</b> = 0.65;	<b>5</b> " = 1.02;	<b>6</b> " = 1.47;	<b>2</b> " = 5.88
TUBING IN	ISIDE DIA. CAI	PACITY (Gal./	Ft.): <b>1/8"</b> = 0.	0006; 3/1	<b>6"</b> = 0.0014	; 1/4" = 0.002	e6; <b>5/16"</b> =	0.004; <b>3/8"</b> = 0	0.006; 1/2	<b>2"</b> = 0.010; <b>5</b>	/ <b>8''</b> = 0.016
PURGING	EQUIPMENT C	ODES: B	= Bailer;	<b>BP</b> = Bladder	1,	ESP = Electric		Pump; <b>PP =</b> P	eristaltic Pun	np; <b>0</b> = Oth	ner (Specify)
	BY (PRINT) / A			SAMPLER(							<u></u>
Victor S Service	an Agustin	/ M&D In	dustrial	Victo	e Z.	San Ol	Justin	SAMPLING INITIATED A	т: 1040	SAMPLING ENDED AT	
PUMP OR	TUBING			TUBING			C FIEL	_D-FILTERED: Y		FILTER SIZ	ΖΕ: μm
	WELL (feet):	5.0		MATERIAL				ation Equipment Ty DUPLICATE			
	CONTAMINATIO			/		G Y N (re	eplaced			SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL	VOLUME	PRESERVA	TIVE	TOTAL VOL	FINAL		AND/OR E	EQUIPMENT CODE	FLOW RATE (mL per minute)
TMW-	<u>2</u>	Plastic	250 ml	HNO:		N/A	N/A	As, Fe,	Mn	APP	~ 0.1 gpm
W											
REMARKS:											
	MATERIAL CODES:       AG = Amber Glass;       CG = Clear Glass;       HDPE = High Density Polyethylene;       LDPE = Low Density Polyethylene;       PP = Polypropylene;         SAMPLING EQUIPMENT CODES:       APP = After (Through) Peristaltic Pump;       B = Bailer;       BP = Bladder Pump;       ESP = Electric Submersible Pump;       PP = Other (Specify)										
NOTES: 1	RFPP = Reverse Flow Peristaltic Pump;         SM = Straw Method (Tubing Gravity Drain);         O = Other (Specify)           OTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.         O = Other (Specify)										

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

**pH:**  $\pm$  0.2 units **Temperature:**  $\pm$  0.2 °C **Specific Conductance:**  $\pm$  5% **Dissolved Oxygen:** all readings  $\leq$  20% saturation (see Table FS 2200-2); optionally,  $\pm$  0.2 mg/L or  $\pm$  10% (whichever is greater) **Turbidity:** all readings  $\leq$  20 NTU; optionally  $\pm$  5 NTU or  $\pm$  10% (whichever is greater)

#### DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

SITE SITE LOCATION: Approx 1/2 mile South of SR29 and SR82, Corkscrew,												
	TMW-E(R		P	SAMPLE	ID: TM				DATE: 07-2		,	
	<b>,</b>	/			PUR	GING DA	ТА					
WELL	0.5	TUBING					STATIC			RGE PUMP TYP		
DIAMETER WELL VO	R (inches): 2 i	1 WELL VOI	TER (inches): LUME = (TOT	3/8 DEP AL WELL DEP	PTH: Uf PTH – ST	eet to 5.0 fee ATIC DEPTH 1	et TO WAT TO WATER) ン	ER (feet): 3.90	TY OR	BAILER:	PP	
	t if applicable)		= (	5.30 fe	et_ 4	52 feet)	x 0.16	gallons/foot	= 0.1	2	allons	
	NT VOLUME PI	JRGE: 1 EQU		. = PUMP VOL	UME + (TU	JBING CAPACI	TY X 1	TUBING LENGTH)				
(only hill ou	(only fill out if applicable) = 0.01 gallons + (0.006 gallons/foot X 7.0 feet) + 0.25 gallons = 0.3 gallons INITIAL PUMP OR TUBING FINAL PUMP OR TUBING PURGING FOR UNIT											
	JMP OR TUBIN WELL (feet):	^G 5.0	_	IP OR TUBIN WELL (feet):	э 5.0		IG ED AT: <b>1055</b>	PURGING ENDED AT:	1130	TOTAL VOLU PURGED (gal		
DEPTHIN		CUMUL.		DEPTH			COND.	DISSOLVED	1130		0115). 1.5	
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	TO WATER (feet)	pH (standaro units)	temp. (°C)	(circle units) μmhos/cm or μS/cm	(circle units) mg/Lor % saturation	TURBIDIT (NTUs)	Y COLOR (describe)	ODOR (describe)	
1100	0.5	0.5	0.1	3.9	7.12	29.14	821	6.22	18.76		None	
1114	0.5	1.0	0.1	3.9	7.23	29.24	842	6.33	10.22		None	
1126	0.5	1.5	0.1	3.9	7.15	29.22	836	6.38	9.84	None	None	
	PACITY (Gallon			<b>1"</b> = 0.04;		.06; <b>2</b> " = 0.1			<b>5"</b> = 1.02;		2" = 5.88	
	ISIDE DIA. CAI EQUIPMENT C			<u>0006; 3/16'</u> BP = Bladder I		1/4" = 0.002 ESP = Electric			.006; <b>1/2'</b> eristaltic Pum		<b>3" =</b> 0.016 er (Specify)	
			,		SAM	PLING DA						
	BY (PRINT) / A San Agustin		dustrial	SAMPLER(S)	$\sqrt{\nu}$		-4-	SAMPLING		SAMPLING		
Service	s, LLČ			Victor	d. ,	Lan Ule	zustin	INITIATED AT	INITIATED AT: 1132 ENDED AT: 1140			
PUMP OR DEPTH IN	TUBING WELL (feet):	5.0		TUBING MATERIAL C	ODE: L	OPE	J FIELI Filtra	D-FILTERED: Y tion Equipment Ty		FILTER SIZE	Ξ: μm	
	CONTAMINATIO				TUBING		eplaced	DUPLICATE:	Y	N		
	PLE CONTAINE		TION			VATION (includ		INTENDI ANALYSIS A		SAMPLING S	AMPLE PUMP	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		TOTAL VOL DED IN FIELD (	FINAL mL) pH	METHO			mL per minute)	
TMW- E	2	Plastic	250 ml	HNO3		N/A	N/A	As, Fe, I	Mn	APP	~ 0.1 gpm	
_												
REMARKS												
	<i>.</i>											
		S = Silicone;	Glass; CG = T = Teflon;	<b>O</b> = Other (	Specify)	= High Density F <b>B</b> = Bailer		LDPE = Low De		ylene; <b>PP</b> =	Polypropylene;	
	G EQUIPMENT	R	RFPP = Revers	hrough) Perista se Flow Perista	Itic Pump;		Method (Tubin	g Gravity Drain);	<b>O</b> = Other		np,	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

**pH:**  $\pm$  0.2 units **Temperature:**  $\pm$  0.2 °C **Specific Conductance:**  $\pm$  5% **Dissolved Oxygen:** all readings  $\leq$  20% saturation (see Table FS 2200-2); optionally,  $\pm$  0.2 mg/L or  $\pm$  10% (whichever is greater) **Turbidity:** all readings  $\leq$  20 NTU; optionally  $\pm$  5 NTU or  $\pm$  10% (whichever is greater)

Attachment 4 – Lab Report



#### **Orlando, FL**

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 Automated Report

07/27/22

#### **Technical Report for**

#### M & D Industrial Services, LLC

Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

E0091

SGS Job Number: FA97452



Sampling Date: 07/20/22

**Report to:** 

M & D Industrial Services, LLC 5896 Azalea St Port Orange, FL 32127 vsanagustin@mdindustrialservices.com; dschill@mdindustrialservices.com

**ATTN: Don Schill** 

#### Total number of pages in report: 25



Norme Farm

Norm Farmer Technical Director

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Dwayne Foster 407-425-6700

Certifications: FL(E83510), LA(03051), KS(E-10327), NC(573), NJ(FL002), NY(12022), SC(96038001) DoD ELAP(ANAB L2229), AZ(AZ0806), CA(2937), TX(T104704404), PA(68-03573), VA(460177), AL, AK, AR, CT, IA, KY, MA, MI. MS, ND, NH, NV, OK, OR, IL, UT, VT, WA, WI, WV This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 4405 Vineland Road • Suite C-15 • Orlando, FL 32811 • tel: 407-425-6700 • fax: 407-425-0707



1 of 25 FA97452

## **Table of Contents**

-

N

ω

4

(J)

#### -1-

Section 1: Sample Summary	3
Section 2: Summary of Hits	4
Section 3: Sample Results	5
3.1: FA97452-1: TMW-W	6
3.2: FA97452-2: TMW-E	7
3.3: FA97452-3: DITCHWATER SEDIMENT	8
3.4: FA97452-4: SEDIMENT NEAR SOIL B	9
Section 4: Misc. Forms	10
4.1: Chain of Custody	11
Section 5: Metals Analysis - QC Data Summaries	13
5.1: Prep QC MP40993: As,Fe,Mn	14
5.2: Prep QC MP41004: As	



#### **Sample Summary**

M & D Industrial Services, LLC

**Job No:** FA97452

Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL Project No: E0091

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
FA97452-1	07/20/22	10:45 VA	07/20/22	AQ	Ground Water	TMW-W
FA97452-2	07/20/22	11:32 VA	07/20/22	AQ	Ground Water	TMW-E
FA97452-3	07/20/22	11:45 VA	07/20/22	SO	Sediment	DITCHWATER SEDIMENT
FA97452-4	07/20/22	11:55 VA	07/20/22	SO	Sediment	SEDIMENT NEAR SOIL B

Soil samples reported on a dry weight basis unless otherwise indicated on result page.



## Summary of Hits

Job Number:	FA97452
Account:	M & D Industrial Services, LLC
Project:	Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL
Collected:	07/20/22

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	PQL	MDL	Units	Method				
FA97452-1	TMW-W									
Arsenic Iron Manganese		17.2 3520 189	10 300 15	1.3 17 1.0	ug/l ug/l ug/l	SW846 6010D SW846 6010D SW846 6010D				
FA97452-2	TMW-E									
Arsenic Iron Manganese		2.1 I 2100 6600	10 300 75	1.3 17 5.0	ug/l ug/l ug/l	SW846 6010D SW846 6010D SW846 6010D				
FA97452-3	DITCHWATER S	EDIMENT								
Arsenic		0.26 I	0.59	0.12	mg/kg	SW846 6010D				
FA97452-4	SEDIMENT NEA	R SOIL B								
Arsenic		0.87	0.62	0.12	mg/kg	SW846 6010D				



Ν







Orlando, FL

Section 3 😡

Sample Results

Report of Analysis





Lab Sample ID:FA97452-1Date Sampled:07/20/22Matrix:AQ - Ground WaterDate Received:07/20/22Percent Solids:n/a	
Percent Solids: n/a	
rerectit Solids. II/ a	
Project:         Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL	

**Report of Analysis** 

#### **Total Metals Analysis**

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	17.2	10	1.3	ug/l	1	07/21/22	07/22/22 LM	SW846 6010D ¹	SW846 3010A ²
Iron	3520	300	17	ug/l	1		07/22/22 LM	SW846 6010D ¹	SW846 3010A ²
Manganese	189	15	1.0	ug/l	1		07/22/22 LM	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA18817

(2) Prep QC Batch: MP40993

ယ

<u>3</u>



Client Sample ID:	TMW-E		
Lab Sample ID:	FA97452-2	Date Sampled:	07/20/22
Matrix:	AQ - Ground Water	Date Received:	07/20/22
		Percent Solids:	n/a
Project:	Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL		

#### **Total Metals Analysis**

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	2.1 I	10	1.3	ug/l	1	07/21/22	07/22/22 LM	SW846 6010D ¹	SW846 3010A ³
Iron	2100	300	17	ug/l	1		07/22/22 LM	SW846 6010D ¹	SW846 3010A ³
Manganese	6600	75	5.0	ug/l	5		07/25/22 LM	SW846 6010D ²	SW846 3010A ³

(1) Instrument QC Batch: MA18817

(2) Instrument QC Batch: MA18819

(3) Prep QC Batch: MP40993



3.2

				Repor	t of .	Analysis	5		Page 1 of 1		
Client Sample ID:DITCHWATER SEDIMENTLab Sample ID:FA97452-3Date Sampled:07/20/22Matrix:SO - SedimentDate Received:07/20/22Percent Solids:76.4											
Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL Metals Analysis											
Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method		
Arsenic	0.26 I	0.59	0.12	mg/kg	1	07/23/22	07/25/22 lm	SW846 6010D ¹	SW846 3050B ²		

(1) Instrument QC Batch: MA18820

(2) Prep QC Batch: MP41004



				Repor	t of .	Analysis	5		Page 1 of 1		
Client Samp Lab Sample Matrix:	<b>ID:</b> FA97	MENT NI 452-4 Sediment	EAR SOII	B			Date Sam Date Rec	eived: 07/20/22			
Percent Solids: 73.1 Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL Metals Analysis											
Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method		
Arsenic	0.87	0.62	0.12	mg/kg	1	07/23/22	07/25/22 LM	SW846 6010D ¹	SW846 3050B ²		

(1) Instrument QC Batch: MA18820

(2) Prep QC Batch: MP41004



3.4 3



Orlando, FL

**Section 4** 

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody



SG	S North A	merica In	c - Orlando	FA9	74	52,	1 1/
909		in of Custo		SGS - ORLANDO	JOB # :	PAGE	OF Y
303	4405 Vineland	Road, Suite C-15 Orland 425-6700 FAX: 407-42	o, FI 32811	SGS - ORLANDO	Quote #	SKIFF #	
Client / Reporting Information	F	www.sgs.com Project Informatic	m		Analytical In	formation	Matrix Codes
Company Name: Myp Industrial Survices	Project Name: HOWAR	D FERT-CON	CKSCREW SPILL SRB2 INTERSEC State FL	SITE			DW - Drinking Water
Address: 5896 Azaka St.	Street Vamile	5 of 5R291	SR82 INTERSEC	TION			GW - Ground Water
City: Port Ovance State: FI Zip: 32127	City CORKS	SCREW	State FL				WW - Water SW - Surface
Project Contact: Vsanagustin @ melinelustrial en sites. con	Project # E	0091		$\leq$			Water SO - Soil
Phone #: 813-842-5520	Fax#	·					SL- Sludge OI - OI
Sampler(s) Name(s) (Printed)	Client Purchase Orc	der# E009.	IVSA	2			LIQ - Other Liquid AIR - Air
Sampler 1: V.) A Sampler 2:	COLLECTION	CONTAIN	ER INFORMATION				SOL - Other Solid
SGS Orlando	SAMPLED	TOTAL∦ ≝ OF ₩ ₩	HCI NaCH HNO3 H2SO4 NACH+ZN4 DI WATER MECH	ASA			
Sample # Field ID / Point of Collection DATE	TIME BY: N	MATRIX BOTTLES & 2					LAB USE ONLY
1 TMW-W Thols	132 VSA		2				
2 THW-E 7/20 3 BH. DITCHWATER SEDIMENT 7/20	1145 VSA 3						
4 SEDIMENT NEAR SOIL B 7/20	(155 V3A)	SOL I I					
	1.02						
							_
			┼┼┼┼┼┼				-
Turnaround Time ( Business days)		Data Deliverab				omments / Remark	S
10 Day (Business) Approved By: / Date		MERCIAL "A" (RESU MERCIAL "B" (RESU		501	- SED	MENT	
5 Day		T1 (EPA LEVEL 3)	L13 FL03 QC)			on	
3 Day RUSH		T1 (EPA LEVEL 4)		INITIAL	SSESSMENT	and	/
2 Day RUSH	EDD'S	s				<u> </u>	
1 Day RUSH					TOPICATION	-8m	
Other Rush T/A Data Available VIA Email or Lablink					ERIFICATION		
Relinquished by Sampler/Affiliation Date Time: Received By/		ted below each time s	amples change possession Relinquished By/Affiliation		Date Time:	Received By/Affiliati	on
1 7/20/22 3 . SHP (4	land Alla	sode	3		7/20/22	4	
Relinquished by/Affiliation Date Time: Received By/	Affiliation	0	Relinquished By/Affiliati	on	Date Time:	Received By/Affiliati	on
5 6	8700		7		L	8 http://www.sgs.com/en/	arms and conditions
Lab Use Only : Cooler Temperature (s) Celsius (corrected): 37	O ALL ORLD-	-SMT-0001-03-FORM-	COC (4) xis Rev 031318			mp.//www.sgs.com/en/	senis-ana-conucions

FA97452: Chain of Custody Page 1 of 2

SGS



4

SGS Sample	e Receipt Sumn	nary
------------	----------------	------

Job Number: FA97452		Client:	M+D INDUSTRIAL	Project: HOWARD FERT-CORKSCREW SPILLSITE					
Date / Time Received: 7/20/2022 3:54:00 PM			Delivery Method: DO		Airbill #'s:				
Therm ID: IR 1;			Therm CF: 0.4;		# of Coole	<b>'s:</b> 1			
Cooler Temps (Raw Measure	ed) °C: Coo	ler 1: (3.8	);						
Cooler Temps (Corrected	ed) °C: Coo	ler 1: (4.2	:);						
Cooler Information	Y or	N		Sample Information		Y or	N	N/A	
1. Custody Seals Present	$\checkmark$			1. Sample labels present	t on bottles	$\checkmark$			
2. Custody Seals Intact				2. Samples preserved pr	operly	$\checkmark$			
3. Temp criteria achieved	$\checkmark$			3. Sufficient volume/cont	ainers recvd for analysis:	$\checkmark$			
4. Cooler temp verification	IR Gun			4. Condition of sample		Intact			
5. Cooler media	<u>lce (Bag)</u>			5. Sample recvd within H	IT	$\checkmark$			
				6. Dates/Times/IDs on C	OC match Sample Label	$\checkmark$			
Trip Blank Information	Y or	<u>N</u>	N/A_	7. VOCs have headspac	e			$\checkmark$	
1. Trip Blank present / cooler			$\checkmark$	8. Bottles received for ur	nspecified tests		$\checkmark$		
2. Trip Blank listed on COC				9. Compositing instruction	ins clear				
	W or	e	N/A	10. Voa Soil Kits/Jars ree	ceived past 48hrs?				
				11. % Solids Jar receive	d?				
3. Type Of TB Received				12. Residual Chlorine Pr	esent?				
Misc. Information									
Number of Encores: 25-Gra	m	5-Gram	Nun	nber of 5035 Field Kits:	Number of La	ab Filtered M	etals:		
Test Strip Lot #s:	pH 0-3			H 10-12 219813A					
Residual Chlorine Test Strip Lo									
Comments									
SM001 Technicia	an: ZANEB		Date: 7/20/2022	2 3:54:00 PM	Reviewer:		Date:		

FA97452: Chain of Custody Page 2 of 2



SGS

4.1 **4** 





Metals Analysis

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries



#### BLANK RESULTS SUMMARY Part 2 - Method Blanks

#### Login Number: FA97452 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP40993 Matrix Type: AQUEOUS Methods: SW846 6010D Units: ug/l

Prep Date:					07/21/22
Metal	RL	IDL	MDL	MB raw	final
Aluminum	200	14	14		
Antimony	6.0	1	1		
Arsenic	10	1.3	1.3	-0.40	<10
Barium	200	.5	1		
Beryllium	4.0	.1	. 2		
Cadmium	5.0	.1	. 2		
Calcium	1000	50	50		
Chromium	10	.5	1		
Cobalt	50	.2	.2		
Copper	25	1	1		
Iron	300	15	17	2.3	<300
Lead	5.0	1	1.1		
Magnesium	5000	35	35		
Manganese	15	.25	1	0.10	<15
Molybdenum	50	.3	.3		
Nickel	40	.4	. 4		
Potassium	10000	100	200		
Selenium	10	2	2.9		
Silver	10	.5	.7		
Sodium	10000	250	500		
Strontium	10	.25	.5		
Thallium	10	1	1.4		
Tin	50	.5	1		
Titanium	10	.5	1		
Vanadium	50	.5	.6		
Zinc	20	3	4.4		
Associated sa	Associated samples MP40993: FA97452-1, FA97452-2				

Associated samples MP40993: FA97452-1, FA97452-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested



#### Login Number: FA97452 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

Methods: SW846 6010D

QC Batch ID: MP40993

Matrix Type: A				Units: ug/l							
Prep Date:			07/21/22					07/21/22	QC		
Metal	FA97452- Original		RPD	QC Limits	FA97452- Original		Spikelot MPFLICP2		QC Limits		
Aluminum	anr										
Antimony	anr										
Arsenic	17.2	17.1	0.6	0-20	17.2	1880	2000	93.1	80-120		
Barium	anr										
Beryllium	anr										
Cadmium	anr										
Calcium	anr										
Chromium	anr										
Cobalt	anr										
Copper	anr										
Iron	3520	3430	2.6	0-20	3520	27300	26000	91.5	80-120		
Lead	anr										
Magnesium	anr										
Manganese	189	187	1.1	0-20	189	668	500	95.8	80-120		
Molybdenum	anr										
Nickel	anr										
Potassium											
Selenium	anr										
Silver	anr										
Sodium	anr										
Strontium											
Thallium	anr										
Tin	anr										
Titanium											
Vanadium	anr										
Zinc	anr										
Associated sam	ples MP40	993: FA97	452-1, FA	97452-2							

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested



5.1.2

G



#### MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

#### Login Number: FA97452 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP40993 Matrix Type: AQUEOUS Methods: SW846 6010D Units: ug/l

Prep Date:					07/21/22				
Metal	FA97452 Origina		Spikelo MPFLICP	t 2 % Rec	MSD RPD	QC Limit			
Aluminum	anr								
Antimony	anr								
Arsenic	17.2	1910	2000	94.6	1.6	20			
Barium	anr								
Beryllium	anr								
Cadmium	anr								
Calcium	anr								
Chromium	anr								
Cobalt	anr								
Copper	anr								
Iron	3520	27800	26000	93.4	1.8	20			
Lead	anr								
Magnesium	anr								
Manganese	189	670	500	96.2	0.3	20			
Molybdenum	anr								
Nickel	anr								
Potassium									
Selenium	anr								
Silver	anr								
Sodium	anr								
Strontium									
Thallium	anr								
Tin	anr								
Titanium									
Vanadium	anr								
Zinc	anr								
Associated sa	amples MP4	0993: FA9	7452-1, F	A97452-2					
Results < IDI (*) Outside ( (N) Matrix Sp	of QC limi	ts			urposes				

(N) Matrix Spike Rec. outside of QC limits
(anr) Analyte not requested



#### Login Number: FA97452 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP40993 Matrix Type: AQUEOUS Methods: SW846 6010D Units: ug/l

Prep Date:			07/21/22		
Metal	BSP Result	Spikelot MPFLICP2		QC Limits	
Aluminum	anr				
Antimony	anr				
Arsenic	1810	2000	90.5	80-120	
Barium	anr				
Beryllium	anr				
Cadmium	anr				
Calcium	anr				
Chromium	anr				
Cobalt	anr				
Copper	anr				
Iron	24700	26000	95.0	80-120	
Lead	anr				
Magnesium	anr				
Manganese	500	500	100.0	80-120	
Molybdenum	anr				
Nickel	anr				
Potassium					
Selenium	anr				
Silver	anr				
Sodium	anr				
Strontium					
Thallium	anr				
Tin	anr				
Titanium					
Vanadium	anr				
Zinc	anr				
Associated sa	mples MP4	)993: FA97	452-1, FA	97452-2	
Results < IDL	are shown	n as zero :	for calcu	lation purposes	

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested



#### SERIAL DILUTION RESULTS SUMMARY

#### Login Number: FA97452 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP40993 Matrix Type: AQUEOUS Methods: SW846 6010D Units: ug/l

Prep Date:		07/21	1/22	
Metal	FA97452-1 Original SDL	1:5 %DIF	QC Limits	
Aluminum	anr			
Antimony	anr			
Arsenic	17.2 16.	2.9	0-10	
Barium	anr			
Beryllium	anr			
Cadmium	anr			
Calcium	anr			
Chromium	anr			
Cobalt	anr			
Copper	anr			
Iron	3520 353	0.3	0-10	
Lead	anr			
Magnesium	anr			
Manganese	189 192	1.6	0-10	
Molybdenum	anr			
Nickel	anr			
Potassium				
Selenium	anr			
Silver	anr			
Sodium	anr			
Strontium				
Thallium	anr			
Tin	anr			
Titanium				
Vanadium	anr			
Zinc	anr			
Associated sa	mples MP40993:	FA97452-1,	, FA97452-2	
Results < IDL		ero for ca	alculation purposes	

(*) Outside of QC limits
(anr) Analyte not requested



#### POST DIGESTATE SPIKE SUMMARY

#### Login Number: FA97452 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP40993 Matrix Type: AQUEOUS Methods: SW846 6010D Units: ug/l

Prep Date:									07/21/22	2
Metal	Sample ml	Final ml	FA97452 Raw	-1 Corr.**	PS ug/l	Spike ml	Spike ug/ml	Spike ug/l	% Rec	QC Limits
Aluminum										
Antimony										
Arsenic	9.8	10	17.2	16.856	108.9	0.2	5	100	92.0	80-120
Barium										
Beryllium										
Cadmium										
Calcium										
Chromium										
Cobalt										
Copper										
Iron	9.8	10	3519	3448.62	6219	0.2	150	3000	92.3	80-120
Lead										
Magnesium										
Manganese	9.8	10	189.1	185.318	232.5	0.2	2.5	50	94.4	80-120
Molybdenum										
Nickel										
Potassium										
Selenium										
Silver										
Sodium										
Strontium										
Thallium										
Tin										
Titanium										
Vanadium										
Zinc										
Associated sa	mples MP4	0993: FA9	7452-1, F	A97452-2						
Results < IDL (*) Outside of (**) Corr. s (anr) Analyte	f QC limit ample res	ts ult = Raw				olume)				



#### BLANK RESULTS SUMMARY Part 2 - Method Blanks

#### Login Number: FA97452 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP41004 Matrix Type: SOLID Methods: SW846 6010D Units: mg/kg

Prep Date:					07/23/22
Metal	RL	IDL	MDL	MB raw	final
Aluminum	10	.7	1.8		
Antimony	1.0	.05	.065		
Arsenic	0.50	.065	.1	0.025	<0.50
Barium	10	.025	.05		
Beryllium	0.25	.005	.025		
Cadmium	0.20	.005	.025		
Calcium	250	2.5	2.5		
Chromium	0.50	.025	.05		
Cobalt	2.5	.01	.025		
Copper	1.3	.05	.05		
Iron	15	.75	.85		
Lead	1.0	.05	.05		
Magnesium	250	1.8	1.8		
Manganese	0.75	.013	.025		
Molybdenum	2.5	.015	.025		
Nickel	2.0	.02	.025		
Potassium	500	5	10		
Selenium	1.0	.1	.12		
Silver	0.50	.025	.041		
Sodium	500	13	25		
Strontium	0.50	.013	.025		
Thallium	0.50	.05	.055		
Tin	2.5	.025	.045		
Titanium	0.50	.025	.025		
Vanadium	2.5	.025	.025		
Zinc	1.0	.15	.15		
Associated sa	amples MP	41004: FA9	97452-3, 1	FA97452-4	

Associated samples MP41004: FA97452-3, FA97452-4

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

5.2.1 5

#### MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

#### Login Number: FA97452 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: Matrix Type:						s: SW846 s: mg/kg	6010D	
Prep Date:		07/23/22	2				07/23/22	
Metal	FA97480-1 Original DUP	RPD	QC Limits	FA97480-1 Original M	1S	Spikelot MPFLICP2		QC Limits
Aluminum								
Antimony	anr							
Arsenic	6.8 8.8 (a)	25.6 (b)	0-20	6.8 7	79.2 (a)	84	86.2	80-120
Barium	anr							
Beryllium	anr							
Cadmium	anr							
Calcium								
Chromium	anr							
Cobalt	anr							
Copper	anr							
Iron								
Lead	anr							
Magnesium								
Manganese	anr							
Molybdenum	anr							
Nickel	anr							
Potassium								
Selenium	anr							
Silver	anr							
Sodium								
Strontium								
Thallium	anr							
Tin								
Titanium								
Vanadium	anr							
Zinc	anr							
Associated sa	mples MP41004: FA9	7452-3, F#	97452-4					

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

(a) Sample dilution required due to difficult matrix.

(b) RPD acceptable due to low duplicate and sample concentrations.

S



#### MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

#### Login Number: FA97452 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP41004 Matrix Type: SOLID Methods: SW846 6010D Units: mg/kg

Prep Date:					07/23/22	
Metal	FA97480-1 Original		Spikelot MPFLICP2	% Rec	MSD RPD	QC Limit
Aluminum						
Antimony	anr					
Arsenic	6.8	85.8 (a)	87	90.9	8.0	20
Barium	anr					
Beryllium	anr					
Cadmium	anr					
Calcium						
Chromium	anr					
Cobalt	anr					
Copper	anr					
Iron						
Lead	anr					
Magnesium						
Manganese	anr					
Molybdenum	anr					
Nickel	anr					
Potassium						
Selenium	anr					
Silver	anr					
Sodium						
Strontium						
Thallium	anr					
Tin						
Titanium						
Vanadium	anr					
Zinc	anr					
Associated sa	mples MP410	04: FA97	452-3, FA	97452-4		
Results < IDI (*) Outside c (N) Matrix Sp	of QC limits	l .			rposes	

(N) Matrix Spike Rec. outside of QC limits
(anr) Analyte not requested

(a) Sample dilution required due to difficult matrix.



5.2.2

G

#### Login Number: FA97452 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID:	MP41004
Matrix Type:	SOLID

Methods: SW846 6010D Units: mg/kg

Prep Date:			07/23/22	
Metal	BSP Result	Spikelot MPFLICP2		QC Limits
Aluminum				
Antimony	anr			
Arsenic	95.8	100	95.8	80-120
Barium	anr			
Beryllium	anr			
Cadmium	anr			
Calcium				
Chromium	anr			
Cobalt	anr			
Copper	anr			
Iron				
Lead	anr			
Magnesium				
Manganese	anr			
Molybdenum	anr			
Nickel	anr			
Potassium				
Selenium	anr			
Silver	anr			
Sodium				
Strontium				
Thallium	anr			
Tin				
Titanium				
Vanadium	anr			
Zinc	anr			

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested



#### SERIAL DILUTION RESULTS SUMMARY

#### Login Number: FA97452 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP41004 Matrix Type: SOLID Methods: SW846 6010D Units: ug/l

Prep Date:			07/23/22	
Metal	FA97480-1 Original		%DIF	QC Limits
Aluminum				
Antimony	anr			
Arsenic	141	139	1.3	0-10
Barium	anr			
Beryllium	anr			
Cadmium	anr			
Calcium				
Chromium	anr			
Cobalt	anr			
Copper	anr			
Iron				
Lead	anr			
Magnesium				
Manganese	anr			
Molybdenum	anr			
Nickel	anr			
Potassium				
Selenium	anr			
Silver	anr			
Sodium				
Strontium				
Thallium	anr			
Tin				
Titanium				
Vanadium	anr			
Zinc	anr			

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits  $% \left( {\left( {{{\bf{r}}_{\rm{s}}} \right)_{\rm{s}}} \right)$ 

(anr) Analyte not requested



24 of 25

#### POST DIGESTATE SPIKE SUMMARY

#### Login Number: FA97452 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP41004 Matrix Type: SOLID Methods: SW846 6010D Units: ug/l

Prep Date:	:e:								07/23/22		
Metal	Sample ml	Final ml	FA97480 Raw	-1 Corr.**	PS ug/l	Spike ml	Spike ug/ml	Spike ug/l	% Rec	QC Limits	
Aluminum											
Antimony											
Arsenic	9.8	10	141.1	138.278	232.6	0.2	5	100	94.3	80-120	
Barium											
Beryllium											
Cadmium											
Calcium											
Chromium											
Cobalt											
Copper											
Iron											
Lead											
Magnesium											
Manganese											
Molybdenum											
Nickel											
Potassium											
Selenium											
Silver											
Sodium											
Strontium											
Thallium											
Tin											
Titanium											
Vanadium											
Zinc											
Associated sa	amples MP4	1004: FA9	97452-3, F	A97452-4							
Results < IDI (*) Outside c (**) Corr.s (anr) Analyte	of QC limi sample res	ts ult = Raw				volume)					



5.2.5





## **Orlando, FL**

The results set forth herein are provided by SGS North America Inc.

09/12/22 e-Hardcopy 2.0 Automated Report

## Technical Report for

## M & D Industrial Services, LLC

Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

e0091

SGS Job Number: FA98581



Sampling Date: 09/01/22

Report to:

M & D Industrial Services, LLC 5896 Azalea St Port Orange, FL 32127 vsanagustin@mdindustrialservices.com; dschill@mdindustrialservices.com

ATTN: Don Schill

## Total number of pages in report: 16



Norme Farm

Norm Farmer Technical Director

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Dwayne Foster 407-425-6700

Certifications: FL(E83510), LA(03051), KS(E-10327), NC(573), NJ(FL002), NY(12022), SC(96038001) DoD ELAP(ANAB L2229), AZ(AZ0806), CA(2937), TX(T104704404), PA(68-03573), VA(460177), AL, AK, AR, CT, IA, KY, MA, MI. MS, ND, NH, NV, OK, OR, IL, UT, VT, WA, WI, WV This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 4405 Vineland Road • Suite C-15 • Orlando, FL 32811 • tel: 407-425-6700 • fax: 407-425-0707

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com



1 of 16 FA98581

-

N

ω

4

(J)

## **Table of Contents**

Section 1: Sample Summary	3
Section 2: Summary of Hits	
Section 3: Sample Results	
3.1: FA98581-1: WEST DITCH WATER	
Section 4: Misc. Forms	7
4.1: Chain of Custody	8
Section 5: Metals Analysis - QC Data Summaries	10
5.1: Prep QC MP41177: Fe	11



## Sample Summary

M & D Industrial Services, LLC

Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL Project No: e0091

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
FA98581-1	09/01/22	09:14 VA	09/01/22	AQ	Surface Water	WEST DITCH WATER

**Job No:** FA98581



## Summary of Hits

Job Number:	FA98581
Account:	M & D Industrial Services, LLC
Project:	Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL
Collected:	09/01/22

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	PQL	MDL	Units	Method
FA98581-1	WEST DITCH W	ATER				
Iron		698	300	17	ug/l	SW846 6010D

N





Orlando, FL

Section 3 😡

Sample Results

Report of Analysis





SGS North America Inc.

				Repor	t of	Analysis	8		Page 1 of 1
Client Sample I Lab Sample ID:	FA98						Date Sam	1	
Matrix:		Surface W					Date Reco Percent S	eived: 09/01/22 olids: n/a	2
Project: Total Metals Ar		rd Fertiliz	zer; SR 29	0 & SR 82	2, Corl	kscrew, FL			
Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	698	300	17	ug/l	1	09/08/22	09/09/22 LM	SW846 6010D ¹	SW846 3010A ²

(1) Instrument QC Batch: MA18900

(2) Prep QC Batch: MP41177



6 of 16

FA98581

<u>ω</u> Page 1 of 1

ω



Orlando, FL

**Section 4** 

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody



SGS	4405	Vincland Road, 3 TEL, 407-425-67	of Cu Suite C-15 00 FAX:	1Sto Orland	<b>ody</b>		'laı	ndo	s	GGS - ORLANDO			<b>%</b>	PAGE_		0F
Client / Reporting Information			ct infor	matic	20	-	-		-		Analyt	ic al le	forma	tion		Matrix Codes
	Project Nam	e: (la ju	. 0	C t	7.	_	1.11	Cla			Analyt			tion	T	DW - Drinking
Address: -201 A- 1 Clistrial Services	Project Nam	FJOW G	nx 1	911	420	24	211	JIR	_				1 1			Water GW - Ground
SOTO ALGUEG ST.	Street 12m	ile south	h of.	X°	29 a	nel	SI	K.82								Water
City: Port Orange State: FL Zip: 32127	City (C	orkscre	w		9	tate F	2									WW - Water SW - Surface
Project Contact:	Project #	EDD	91													Water
Project Contact: V San agustin @ mellindustrial survius. ( Phone #: 813.842-5520	Fax #	000	11			_			-							SO - Soil SL- Sludge
815.842-032U	011-111		1						_\	2						OI - Oil
Sampler(s) Name(s) (Printed) Sampler 1: V S A Sampler 2:	Client Purch	ase Drder #	VSA	Ē	00	71			1	JII						LIQ - Other Liquid AIR - Air
	COLLECTION		c	ONTAIN	ER INFO	MATION		21 1	=	5						SOL - Other Solid
SGS Orlando			TOTAL #	e:			2	AOH+ZNJ WATER		202						
Sample # Field ID / Point of Collection DATE		MPLED BY: MATRIX	OF BOTTLES	OTHER	Į Į	CONH	H2SO4	DI WI	MEOH			_				LAB USE ONLY
											147					
1 WEST DITCH WATER 09-01-22	0914 V	SASW	1			1			V							
	/															
									+			-			+	
					++			++	+			-	+			
				-	++	+	-	++	+			-	+		+	
				-			-		+			-	-			
					++	+			+		$\left  - \right $	+-	+			
Turnaround Time ( Business days)		Da	ta Deliv	erah	le Infe	prmai	tion		_			Cr	mmer	nts / Rer	marks	
10 Day (Business) Approved By: / Date	. Г	COMMERC					uon					1.01	Jimier	1071007	Λ	1
(7 Day)		COMMERCI					C)							/	11	14 I
5 Day		REDT1 (EP					-,			INI	IAL ASS	ESSN	IENT	1	v	_0
3 Day RUSH		FULLT1 (EP														/
2 Day RUSH	-	EDD'S		.,												00/
1 Day RUSH		rud.								LAI	BEL VERI	FICA	TION_		0	V V
Other																
Rush T/A Data Available VIA Email or Lablink	du munt he des	umonted b-1	ow or ot	Hon -	om-1	aba		000	er i	naludhaa!	allua		-			
Relinguished by Salapler/Affiliation / Date Time: Received By/			ow each	ume s				/Affiliat		including courier d	Date Tim	ie:	Receiv	ved By/At	ffiliatio	n
		K SI	45		3								4			
1         June 91/32         2         2           Rclinquished by/Affiliation         Date Time:         Received By/	Affiliation	/			Relin	quish	ed By	/Affiliat	lion		Date Tim	ie:	Receiv	ved By/Al	ffiliatio	41
5 6	_ /				7								8			
Lab Use Only : Cooler Temperature (s) Celsius (corrected): 41	8 CTN	(	_									1	http://ww	w.sgs.co	m/en/te	rms-and-conditions

ORLD-SMT-0001-03-FORM-COC (4).xis Rev 031318

FA98581: Chain of Custody Page 1 of 2



SGS

44

4

Delivery N           Therm CF:           or 1: (4.8);           or 1: (5.4);           N	Sample Information	Airbill #'s: # of Cooler	rs: 1 _Y or N	
er 1: (4.8); er 1: (5.4); D	Sample Information			
er 1: (5.4);		<u>n</u>	V or N	
<u>N</u>		n	V or N	
		<u>n</u>	V or N	
_	1. Operate total			<u>N/A</u>
	<ol> <li>Sample labels pres</li> </ol>	ent on bottles		
	2. Samples preserved	l properly		
	3. Sufficient volume/c	ontainers recvd for analysis:		
	4. Condition of sampl	e	Intact	
	5. Sample recvd withi	n HT		
	6. Dates/Times/IDs o	n COC match Sample Label		
<u>N N/A</u>	7. VOCs have heads	bace		$\checkmark$
	8. Bottles received for	r unspecified tests		
	9. Compositing instru	ctions clear		$\checkmark$
S N/A	10. Voa Soil Kits/Jars	received past 48hrs?		$\checkmark$
	11. % Solids Jar rece	ived?		$\checkmark$
	12. Residual Chlorine	Present?		$\checkmark$
5-Gram	Number of 5035 Field Kits:	Number of La	ab Filtered Metals:	
230315	pH 10-12 219813A	Other: (Spec	cify)	
	□	N       N/A       5. Sample recvd with         6. Dates/Times/IDs o       7. VOCs have heads         □       ✓       8. Bottles received fo         □       ✓       9. Compositing instru         10. Voa Soil Kits/Jars       11. % Solids Jar rece         □       ✓       12. Residual Chlorine         5-Gram       Number of 5035 Field Kits:         230315       pH 10-12       219813A	Image: Section of the section of th	5. Sample recvd within HT       Image: Constraint of the system of the sys

FA98581: Chain of Custody Page 2 of 2











Metals Analysis

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries



#### BLANK RESULTS SUMMARY Part 2 - Method Blanks

#### Login Number: FA98581 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP41177 Matrix Type: AQUEOUS Methods: SW846 6010D Units: ug/l

Prep Date:					09/08/2	2	09/08/22		
Metal	RL	IDL	MDL	MB raw	final	MB raw	final		
Aluminum	200	14	14						
Antimony	6.0	1	1						
Arsenic	10	1.3	1.3						
Barium	200	.5	1						
Beryllium	4.0	.1	.2						
Cadmium	5.0	.1	.2						
Calcium	1000	50	50						
Chromium	10	.5	1						
Cobalt	50	.2	.2						
Copper	25	1	1						
Iron	300	15	17	-0.60	<300	7.2	<300		
Lead	5.0	1	1.1						
Magnesium	5000	35	35						
Manganese	15	.25	1						
Molybdenum	50	.3	.3						
Nickel	40	.4	.4						
Potassium	10000	100	200						
Selenium	10	2	2.9						
Silver	10	.5	.7						
Sodium	10000	250	500						
Strontium	10	.25	.5						
Thallium	10	1	1.4						
Tin	50	.5	1						
Titanium	10	.5	1						
Vanadium	50	.5	.6						
Zinc	20	3	4.4						
		11177	00501 1						

5.1.1 **5** 

Associated samples MP41177: FA98581-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested



#### MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

#### Login Number: FA98581 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP41177 Matrix Type: AQUEOUS Methods: SW846 6010D Units: ug/l

Prep Date:		09/08/22	2			09/08/22	
Metal	FA98581-1 Original DUP	RPD	QC Limits	FA98581-1 Original MS	Spikelot MPFLICP2		QC Limits
Aluminum	anr						
Antimony							
Arsenic	anr						
Barium	anr						
Beryllium							
Cadmium	anr						
Calcium							
Chromium	anr						
Cobalt							
Copper							
Iron	698 688	1.4	0-20	698 26300	26000	98.5	80-120
Lead	anr						
Magnesium							
Manganese							
Molybdenum							
Nickel							
Potassium							
Selenium	anr						
Silver	anr						
Sodium	anr						
Strontium							
Thallium							
Tin							
Titanium							
Vanadium							
Zinc	anr						
Associated sa	mples MP41177: FA9	8581-1					
Results < IDL (*) Outside of		for calcu		urposes			

5.1.2 **5** 

12 of 16

FA98581

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

#### MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

## Login Number: FA98581 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP41177 Matrix Type: AQUEOUS Methods: SW846 6010D Units: ug/l

Prep Date:			09/08/2	22
Metal	FA98581-1 Original MSD	Spikelot MPFLICP2 % Rec	MSD RPD	QC Limit
Aluminum	anr			
Antimony				
Arsenic	anr			
Barium	anr			
Beryllium				
Cadmium	anr			
Calcium				
Chromium	anr			
Cobalt				
Copper				
Iron	698 26800	26000 100.4	1.9	20
Lead	anr			
Magnesium				
Manganese				
Molybdenum				
Nickel				
Potassium				
Selenium	anr			
Silver	anr			
Sodium	anr			
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc	anr			
	mples MP41177: F			
(*) Outside o (N) Matrix Sp		ro for calculation of QC limits	purposes	



13 of 16

#### SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

#### Login Number: FA98581 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP41177 Matrix Type: AQUEOUS Methods: SW846 6010D Units: ug/l

Prep Date:			09/08/22	
Metal	BSP Result	Spikelot MPFLICP2	% Rec	QC Limits
Aluminum	anr			
Antimony				
Arsenic	anr			
Barium	anr			
Beryllium				
Cadmium	anr			
Calcium				
Chromium	anr			
Cobalt				
Copper				
Iron	25600	26000	98.5	80-120
Lead	anr			
Magnesium				
Manganese				
Molybdenum				
Nickel				
Potassium				
Selenium	anr			
Silver	anr			
Sodium	anr			
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc	anr			
Associated sam	mples MP4	1177: FA98	581-1	
Results < IDL (*) Outside of	E QC limit	ts	for calcu	lation p

(anr) Analyte not requested



14 of 16

#### SERIAL DILUTION RESULTS SUMMARY

#### Login Number: FA98581 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP41177 Matrix Type: AQUEOUS Methods: SW846 6010D Units: ug/l

Prep Date:			09/08/22	
Metal	FA98581- Original	1 SDL 1:5	%DIF	QC Limits
Aluminum	anr			
Antimony				
Arsenic	anr			
Barium	anr			
Beryllium				
Cadmium	anr			
Calcium				
Chromium	anr			
Cobalt				
Copper				
Iron	698	642	8.1	0-10
Lead	anr			
Magnesium				
Manganese				
Molybdenum				
Nickel				
Potassium				
Selenium	anr			
Silver	anr			
Sodium	anr			
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc	anr			
Associated sa	mples MP41	177: FA98	581-1	
Results < IDL (*) Outside o			for calcu	lation purposes

(anr) Analyte not requested



15 of 16

#### POST DIGESTATE SPIKE SUMMARY

#### Login Number: FA98581 Account: MDIFLPO - M & D Industrial Services, LLC Project: Howard Fertilizer; SR 29 & SR 82, Corkscrew, FL

QC Batch ID: MP41177 Matrix Type: AQUEOUS Methods: SW846 6010D Units: ug/l

Prep Date:									09/08/22	2
Metal	Sample ml	Final ml	FA98581 Raw	-1 Corr.**	PS ug/l	Spike ml	Spike ug/ml	Spike ug/l	% Rec	QC Limits
Aluminum										
Antimony										
Arsenic										
Barium										
Beryllium										
Cadmium										
Calcium										
Chromium										
Cobalt										
Copper										
Iron	9.8	10	698	684.04	3912	0.2	150	3000	107.6	80-120
Lead										
Magnesium										
Manganese										
Molybdenum										
Nickel										
Potassium										
Selenium										
Silver										
Sodium										
Strontium										
Thallium										
Tin										
Titanium										
Vanadium										
Zinc										
Associated samples MP41177: FA98581-1										
Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (**) Corr. sample result = Raw * (sample volume / final volume) (anr) Analyte not requested										



Attachment 5 – Material Data Sheet of Spilled Fertilizer and Arsenic Content in Plant Water Galorexcel CSL 7

## Guaranteed Analysis #91419

Magnesium (Mg) 1.5% Water Soluble Mg	1.50%
Chelated Iron (Fe)	3.50%
Chelated Manganese (Mn)	
Chelated Zinc (Zn)	0.75%
Chelated Copper (Cu)	0.05%
Boron (B)	0.10%
Molybdenum (Mo)	0.001%
Combined Sulfur (S)	4.00%

Derived From: Magnesium Citrate, Iron Citrate, Manganese Citrate, Zinc Citrate, Copper Citrate, Sodium Borate, Sodium Molybdate.

## DIRECTIONS FOR USE:

Lawns, Turf, Golf Courses: Maintenance Rate - Use 1 to 2 ounces per 1,000 sq. ft. in enough water for thorough coverage (3 to 5 gallons of water per 1,000 sq. ft. is recommended). Severe Deficiency - Use 2 to 4 ounces per 1,000 sq. ft. in enough water for thorough coverage. Repeat applications as needed. Four to six applications annually are recommended.

**Tees and Greens:** Use 1 to 2 ounces per 1,000 sq. ft. as a maintenance rate in enough water for thorough coverage (3 to 5 gallons of water per 1,000 sq. ft. is recommended).

**Ornamental Plants:** Use 1 to 2 quarts per 100 gallons of water and apply as a drench or foliar application. Repeat application as needed.

**CAUTIONS:** Avoid getting in eyes, mucous membranes, or on the skin. Use with adequate ventilation. Keep container capped when not in use. Do not contaminate water supplies.

ANTIDOTES: Skin or eye contact: Flush thoroughly with water and see a physician. Internal: Induce vomiting if conscious and get medical attention at once. CAUTION: Avoid spraying painted or concrete surfaces as staining may occur. CONDITIONS OF SALE: Seller warrants that this product consists of the ingredients specified and is reasonably fit for the purpose stated on this label when used in accordance with directions under normal conditions of use. No one, other than the officer of Seller, is authorized to make any warranty, guarantee, or directions concerning this product. Because the time, place, rate of application and other conditions of use are beyond Seller's control, Seller's liability from handling, storage and use of this product is limited to replacement of product or refund of purchase price. Weight per gallon: 10.54 Lbs

Manufactured By: F1016 Howard Fertilizer and Chemical Co., Inc. 8306 S. Orange Ave. Orlando, FL 32809

Gator Brand is a registered trademark of Howard Fertilizer and Chemical Co, Inc.

Lot Number

### **Net Contents**

**Gal/Liters** 

## **CAUTION: KEEP OUT OF REACH OF CHILDREN**



# Water Analysis

## Waters Agricultural Laboratories, Inc

"Improving Growth... With Science"

257 Newton Hwy | Camilla, GA 31730- | Phone (229) 336-7216

	257 Newton Hwy   Calillia, GA	(31730-   Filolie (229) 330-7210				
Customer: 4356	Sample ID: 1					
IE LIQUID PLANT INC	Grower: THE L	IQUID PLANT	Received:			
	Farm ID:		Processed:	Processed: 12/16/2019		
000 COUNTY RD. 846 E	Field ID:					
MMOKALEE, FL 34142	Lab Number: 5744					
NITED STATES						
	Analytic	cal Results				
	Analyte	Result	Units			
	Arsenic	0.017	ppm			

Comments

Analysis: Arsenic: EPA 7061A

MDL(ppm): As 0.001

BDL = Below Detection Limit -- = Analysis Not Performed For Analyte

This document may be reproduced only in its entirety. As we have no control over the manner in which samples are collected, the analysis is based solely upon the samples as received. Liability is limited to the fee assessed on the referenced samples.



## SITE ASSESSMENT REPORT Road Fertilizer Spill ½ Mile South of SR-29 and SR-82 Corkscrew, Collier County, Florida 34142 FDEP OER Report No. OHMIT #2019-3I-64280Z

## prepared for

Howard Fertilizer and Chemical Company, Inc. 8306 South Orange Avenue Orlando, FL 32809

## prepared by

M & D Industrial Services, LLC 5896 Azalea Street Port Orange, Florida 32127

January 31, 2020

## **Table of Contents**

1.0	Introduction	3
2.0	Summary of Findings / Recommendations	3
3.0	Certification by Responsible Authority	4
4.0	Figures	
	Figure 1 – Location of Spill Site Figure 2 – Soil, Groundwater, Surface Water Sample Locations Figure 3 – Analytical Results	
5.0	Tables	
	Table 1 – Summary of Soil Lab Data Table 2 – Summary of Groundwater Lab Data Table 3 – Summary of Surface Water Lab Data	
6.0	Attachments	

Attachment 1 - Material Data Sheet of Spilled Fertilized
----------------------------------------------------------

- Attachment 2 October 4, 2019 Email from FDEP's Lina Cerquera Attachment 3 Temporary Monitor Well Construction Logs
- Attachment 4 Monitor Well Sampling Logs

Attachment 5 – Lab Reports

## **1.0 Introduction**

M&D Industrial Services, LLC (M&D) was requested by Howard Fertilizer and Chemical Company, Inc. (Howard) to respond to requests from FDEP to sample and analyze soil, sediments, groundwater, and surface water located at a roadside spill. The spilled fertilizer was owned by Howard Fertilizer and Chemical Company. In early October, 2019, while in transit and after making an immediate stop, a truck carrying two (2) - 300 gallon totes containing a fertilizer product identified as Gator Excel XL CSL 7 spilled on State Road SR-29 approximately ¹/₂ mile south of the intersection of State Road SR-82 and SR-29 in Corkscrew, Collier County. A material data sheet of the fertilizer product is enclosed as **Attachment 1**. **Figure 1** is a site location map showing the spill site.

On October 4, 2019, Lina Cerquera from FDEP's Emergency Response Division emailed Howard Fertilizer a request to conduct a site assessment at the spill site. A copy of the email is included in **Attachment 2**.

Personnel from M&D pulled samples of soil, surface water or ditch water on October 14, 2019. M&D later returned to the spill site on October 30, 2019 and installed 3 temporary monitor wells. The 3 temporary monitor wells were sampled the next day, October 31, 2019. A background surface water or ditch water sample was also pulled on October 31. Construction Logs for the 3 temporary monitor wells are included in **Attachment 3**. Monitor Well sampling logs are included in **Attachment 4**.

## 2.0 Summary of Findings / Recommendations

Lab results for all the samples pulled in October, 2019 are summarized in **Tables 1, 2, and 3**. **Table 1** presents the lab results of the soil and sediment samples. **Table 2** presents the lab results for the groundwater samples. **Table 3** presents the lab results of the ditch water or surface water samples. Copies of the lab reports are included in **Attachment 5**.

Results in **Table 1** shows no soil samples with results above the residential soil cleanup target levels (SCTL). Only the "West Ditch Sediments" sample showed an arsenic level of 3.4 mg/kg, above the residential soil cleanup target level of 2.1 mg/kg. Since "West Ditch Sediments" is a sediment sample and not a soil sample, it is requested that the Department inform M&D and Howard of the appropriate cleanup target level.

If the Department determines that the 3.4 mg/kg is the appropriate SCTL for sediments, it is requested that the Department consider that arsenic may be naturally occurring in the area. Background sediment samples may be pulled near the site to substantiate the claim that elevated levels of arsenic may be naturally occurring in the area.

Plant water from Howard Fertilizer in Immokalee, the facility that manufactured the spilled fertilizer was sampled and then analyzed for arsenic on December 12, 2019. Result was 0.017 ppm. A copy of the lab result is included in Attachment 5.

Groundwater results in **Table 2** show the sample pulled from monitor well TMW-W had an arsenic level of 14.2 ug/lit, above the arsenic groundwater cleanup target level of 10 ug/lit.

Iron was 12,900 ug/lit, above the iron GCTL of 300 ug/lit. Manganese in samples from TMW-West (TMW-W) and TMW-East (TMW-E) was 55.1 ug/lit and 106 ug/lit respectively. Both are above the Manganese GCTL of 50 ug/lit. M&D recommends that TMW-W, TMW-E, and TMW-B be sampled for arsenic, iron, and manganese to asses contaminant levels 3 months later.

Surface water results in Table 3 shows copper levels in the sample from the East Ditch water was 29.5 ug/lit. Table 3 also shows that the Copper standard may either be 30.5 ug/lit or 21.5 ug/lit. It is requested that the Department inform M&D of the appropriate surface water standard for copper at the East Ditch Water sample. M&D also recommends that another sample be pulled for copper analysis at the same East Ditch Water sample location. M&D believes the copper level may decrease after 3 months.

Table 3 also shows the iron levels in the West and East Ditch Water are 2,240 ug/lit and 4.160 ug/lit respectively. Both are above the Class III surface water standard for iron of 1.0 ug/lit. It is important to note that a background sample identified as Northeast Ditch Water had an iron level of 171 I ug/lit which is already above the 1.0 ug/lit surface water standard for iron. M&D recommends resampling the same 3 surface water locations and analyzing for iron to assess iron levels 3 months later.

M&D plans to survey the 3 temporary wells and measure water levels at the next site visit to help assess groundwater elevations and direction of groundwater flow at the spill site.

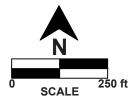
## 3.0 Certification by Responsible Authority:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

2020 ich Michael Brooks

**Compliance** Officer Howard Fertilizer & Chemical Company, Inc. 8306 South Orange Avenue

lictor J. Son Joustin 01-31-2020


Victor L. San Agustin, P.E., C.H.M.M. Date Florida Professional Engineer No. 40226 M & D Industrial Services, LLC. 5896 Azalea Street Port Orange, FL 32127

January 31, 2020

Orlando, FL 32809

4.0 Figures



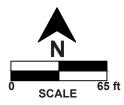


HOWARD FERTILIZER & CHEMICAL CO. Spill Site - Approx 1 Mile South of SR82 and SR29 Corkscrew, Collier County, FL 34142

Location of Spill Site

PROJECT NO.:	E0091	

DATE:


FIGURE 1

Jan 22, 2020

M&D INDUSTRIAL SERVICES, LLC. 5896 Azalea Street Port Orange, FL 32127 www.mdindustrialservices.com







HOWARD FERTILIZER & CHEMICAL CO. Spill Site - Approx 1/2 Mile South of SR82 and SR29 Corkscrew, Collier County, FL 34142

Location of Samples Pulled

PROJECT NO.: E0091

DATE: Jan 22, 2020

FIGURE 2

M&D INDUSTRIAL SERVICES, LLC. www.mdindustrials

5.0 Tables

Table 1 - Summary of Soil Lab Data Howard Fertilizer Spill Site Approx 1/2 Mile south of SR-29 & SR-82 Intersection, Corkscrew, Collier County

	Sample	Arsenic	Beryllium	Boron		Chromium	••	Fluoride	Iron		Manganese	•	Nickel	Sodium	Uranium	Zinc	Nitrogen, Ammonia	Nitrogen, Nitrate	Nitrogen, Nitrite	Sulfate
	Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Background	10/14/2019	0.56	0.033 I	1.7 U	0.024 U	2.1	1.2	1.4 U	859	5.1	2.0	0.024 U	0.53 I	24 U	ND	3.2	30.5	2.8 U	2.8 U	34.0 U
West Soil, 0-1 ft BLS	10/14/2019	2.1	0.039 I	53.1	0.021 U	2.5	1.9	3.0 I	2,050.0	20.6	9.4	0.081 I	0.78 I	36.6 I	ND	10.2	69.9	2.8 U	2.8 U	252.0
West Soil, 1-2 ft BLS	10/14/2019	1.2	0.028 U	1.9 U	0.028 U	1.5	3.8	1.5 U	1,030.0	4.8	42.6	0.32 I	0.62 I	38.5 I	9.31	49.6	15	3.0 U	3.0 U	440.0
West Ditch Sediments	10/14/2019	3.4	0.21 I	4.3 U	0.061 I	10.3	22.2	3.7 U	4,770.0	8.1	292	0.39 I	3.8 I	232 I	9.47 J	362.0	276.0	7.4 U	7.4 U	1,190.0
East Soil, 0-1 ft BLS	10/14/2019	0.51	0.051 I	10.9 I	0.067 I	5.8	9.6	1.4 U	1,300.0	19.8	249	0.27 I	2.8	70.8 I	3.87 J	276.0	183.0	10.8	2.9 U	1,240.0
East Soil, 1-2 ft BLS	10/14/2019	0.13 I	0.026 U	1.7 U	0.026 U	0.20 I	0.094 I	1.4 U	134.0	0.21 I	0.26 I	0.026 U	0.073 I	26.0 U	1.84 J	0.22 I	17.5	3.6 I	2.9 U	34.0 U
East Ditch Sediments	10/14/2019	2.2	0.12 I	10.2 I	0.14 I	12.0	77.1	8.1 I	2,010.0	27.2	36.2	0.73 I	3.2 I	207 I	10.8 J	48.4	24.6	10.0 U	10.0 U	120 0 U
Residential SCTL		2.1	120.0	17,000.0	82.0	210.0	150.0	840.0	53,000.0	400.0	3,500.0	440.0	340.0		110.0	26,000.0	35,000.0	140,000.0	8,700.0	
Industrial SCTL		12.0	1,400.0	430,000.0	1,700.0	470.0	89,000.0	130,000.0	*	1,400.0	43,000.0	11,000.0	35,000.0		820.0	630,000.0	880,000.0	*	220,000.0	
Alternate SCTL														20,000.00						2,200.00
Leachability SCTL		***	63.0	***	7.5	38.0	***	6,000.0	***	***	***	***	130	320,000.00	***	***	***	***	***	None

* Contaminant is not a health concern for this exposure scenario.

*** Leachability values may be derived using the SPLP Test to calculate site specific SCTLs or may be determined using TCLP in the event oily wastes are present.

Table 2 - Summary of Groundwater Lab Data Immokalee Spill Site Approx. 1/2 Mile South of SR29 and SR82, Corkscrew, Collier County

	Sample Date	Arsenic (ug/l)	Beryllium (ug/l)	Boron ^a (ug/l)	Cadmium (ug/l)	Chromium (ug/l)	Copper (ug/l)	Fluoride (ug/l)	Iron (ug/l)	Lead (ug/l)	Manganese (ug/l)	Molybdenum (ug/l)	Nickel (ug/l)	Sodium (ug/l)	Uranium (ug/l)	Zinc (ug/l)	Nitrogen, Ammonia (ug/l)	Nitrogen, Nitrate (ug/l)	Nitrogen, Nitrite (ug/l)	Sulfate (ug/l)
TMW-W	10/31/2019	14.2	0.20 U	291.0	0.20 U	2.0 I	1.0 U	560.0 I	12,900.0	9.8	55.1	4.1 IB	26.2 I	28,000.0	10.3 J	54.8	1,800.0	250 U	250 U	43,600.0
TMW-E	10/31/2019	1.3 U	0.20 U	63.0 U	0.20 U	1.8 I	1.0 U	260	864.0	4.6 I	106.0	3.6 IB	0.40 U	2,270 I	10.3 J	42.7	170 I	50.0 U	50.0 U	8,100.0
TMW-B	10/31/2019	1.3 U	0.20 U	74.1 I	0.20 U	2.3 I	1.0 U	470.0	4,170.0	4.6 I	28.9	0.90 IB	0.40 U	23,800.0	8.78 U	4.4 U	500.0	50.0 U	50.0 U	5,000.0
GCTL		10.0	4.0	None	5.00	100.0	1,000.0	4000.0	300.0	15.0	50.0	None	100.0	160,000.0	30.0	5,000.0	None	10,000.0	1,000.0	250,000.0

Table 3 - Summary of Surface Water Lab Data **Corkscrew Spill Site** Approx. 1/2 Mile South of SR29 and SR82, Corkscrew, Collier County

	Sample Date	Arsenic (ug/l)	Beryllium (ug/l)	Boron ^a (ug/l)	Cadmium (ug/l)	Chromium (ug/l)	Copper (ug/l)	Fluoride (ug/l)	Iron (ug/l)	Lead (ug/l)	Manganese (ug/l)	Molybdenum (ug/l)	Nickel (ug/l)	Sodium (ug/l)	Uranium (ug/l)	Zinc (ug/l)	Nitrogen, Ammonia (ug/l)	Nitrogen, Nitrate (ug/l)	Nitrogen, Nitrite (ug/l)	Sulfate (ug/l)
West Ditch Water	10/14/2019	3.2 I	0.20 U	367.0	0.20 U	1.3 I	1.8 I	0.30 U	2,240.0	1.1 U	462.0	2.1 I	10.6 I	22,500.0	14.5	65.0	0.28	0.25 U	0.25 U	23.6
East Ditch Water	10/14/2019	5.1 I	0.20 U	63.0 U	0.20 U	1.0 U	29.5	0.30 U	4,160.0	1.1 U	1,460.0	0.30 U	0.90 I	27,300.0	15.4	54.8	0.060 U	0.25 U	0.25 U	3.0 U
Northeast Ditch Water	10/31/2019	2.9 I	0.20 U	75.9 I	0.20 U	1.0 U	1.0 U	280	171 I	4.0 I	45.7	0.30 U	0.40 U	13,200.0	2.96 U	5.6 I	62.0 I	260	50 U	5,600.0
Class III Surface Water St	andard	50.0	0.1	None	0.10	11.0	2.9	10.0	1.0	0.5	None	None	16.1	None	None	37.0	310.6	None	None	None
			annual ave		or	(Note 2)	or			or			or			or				
					0.76		30.5			18.6			168.5			387.8				
Class III West Ditch Wate	r Surface Wat	er Standar	•d		0.58		22.3			11.6			123.5			284.1				
Class III East Ditch Water	Surface Wate	r Standar	d		0.56		21.5			11.0			119.0			273.6				
					(Note 1)		(Note 3)			(Note 4)			(Note 5)			(Note 6)				
Note 1 - Cd is 0.1 if hardnes	s is set at 25 mg	g/l. Cd is 0	.76 if hardness	is set at 400	0.0 mg/l. Lab	report fa68973	R shows W	est Ditch wat	er hardness te	sted 277 m	g/l and East Dit	ch water hardnes	s tested 265 n	ng/l.						
Note 2 - Applies to hexavale	nt chromium														-	Temp deg (	28.0			

pН

7.15

(Note 7)

Note 3 - Cu is 2.9 if hardness is set at 25 mg/l. Cd is 30.5 if hardness is set at 400 mg/lit. Lab report fa68973R shows West Ditch water hardness tested 277 mg/l and East Ditch water hardness tested 265 mg/l. Note 4 - Pb is 0.5 if hardness is set at 25 mg/l. Pb is 18.6 if hardness is set at 400 mg/lit. Lab report fa68973R shows West Ditch water hardness tested 277 mg/l and East Ditch water hardness tested 265 mg/l.

Note 5 - Ni is 16.1 if hardness is set at 25 mg/l. Ni is 168.5 if hardness is set at 400 mg/lit. Lab report fa68973R shows West Ditch water hardness tested 277 mg/l and East Ditch water hardness tested 265 mg/l.

Note 6 - Zinc is 37.0 if hardness is set at 25 mg/l. Zinc is 387.8 if hardness is set at 400 mg/lit. Lab report fa68973R shows West Ditch water hardness tested 277 mg/l and East Ditch water hardness tested 265 mg/l.

Note 7 - Lab report fa68973R shows pH of West Ditch water sample was 7.15 and pH of East Ditch water sample was 7.36. Nitrogen, Ammonia standard shown is based on a pH of 7.15

6.0 Attachments

Attachment 1 – Material Data Sheet of Spilled Fertilizer Galorexcel CSL 7

### Guaranteed Analysis #91419

Magnesium (Mg) 1.5% Water Soluble Mg	1.50%
Chelated Iron (Fe)	3.50%
Chelated Manganese (Mn)	
Chelated Zinc (Zn)	0.75%
Chelated Copper (Cu)	0.05%
Boron (B)	0.10%
Molybdenum (Mo)	0.001%
Combined Sulfur (S)	4.00%

Derived From: Magnesium Citrate, Iron Citrate, Manganese Citrate, Zinc Citrate, Copper Citrate, Sodium Borate, Sodium Molybdate.

## DIRECTIONS FOR USE:

Lawns, Turf, Golf Courses: Maintenance Rate - Use 1 to 2 ounces per 1,000 sq. ft. in enough water for thorough coverage (3 to 5 gallons of water per 1,000 sq. ft. is recommended). Severe Deficiency - Use 2 to 4 ounces per 1,000 sq. ft. in enough water for thorough coverage. Repeat applications as needed. Four to six applications annually are recommended.

**Tees and Greens:** Use 1 to 2 ounces per 1,000 sq. ft. as a maintenance rate in enough water for thorough coverage (3 to 5 gallons of water per 1,000 sq. ft. is recommended).

**Ornamental Plants:** Use 1 to 2 quarts per 100 gallons of water and apply as a drench or foliar application. Repeat application as needed.

**CAUTIONS:** Avoid getting in eyes, mucous membranes, or on the skin. Use with adequate ventilation. Keep container capped when not in use. Do not contaminate water supplies.

ANTIDOTES: Skin or eye contact: Flush thoroughly with water and see a physician. Internal: Induce vomiting if conscious and get medical attention at once. CAUTION: Avoid spraying painted or concrete surfaces as staining may occur. CONDITIONS OF SALE: Seller warrants that this product consists of the ingredients specified and is reasonably fit for the purpose stated on this label when used in accordance with directions under normal conditions of use. No one, other than the officer of Seller, is authorized to make any warranty, guarantee, or directions concerning this product. Because the time, place, rate of application and other conditions of use are beyond Seller's control, Seller's liability from handling, storage and use of this product is limited to replacement of product or refund of purchase price. Weight per gallon: 10.54 Lbs

Manufactured By: F1016 Howard Fertilizer and Chemical Co., Inc. 8306 S. Orange Ave. Orlando, FL 32809

Gator Brand is a registered trademark of Howard Fertilizer and Chemical Co, Inc.

Lot Number

#### **Net Contents**

**Gal/Liters** 

# **CAUTION: KEEP OUT OF REACH OF CHILDREN**

Attachment 2 – October 4, 2019 Email from Lina Cerquera of FDEP Office of Emergency Response

### **Victor San Agustin**

From:	Michael Brooks <mbrooks@howardfert.com></mbrooks@howardfert.com>
Sent:	Friday, October 4, 2019 1:06 PM
To:	Victor San Agustin
Cc:	Cerquera, Lina
Subject:	FW: FDEP OER OHMIT#2019-3I-64280Z - Howard Fertilizer - SR-82 & SR-29 - Fertilizer Discharge
Importance:	High

From: Cerquera, Lina <Lina.Cerquera@FloridaDEP.gov> Sent: Friday, October 04, 2019 1:04 PM To: Michael Brooks < MBrooks@howardfert.com> Subject: FDEP OER OHMIT#2019-3I-64280Z - Howard Fertilizer - SR-82 & SR-29 - Fertilizer Discharge Importance: High

#### *** External Email ***

Good afternoon Mr. Brooks,

The following are the determined Constituents of Concern (COC) relating the 500 gallon Fertilizer release reported near the intersection of SR-29 & SR-82. The department used the provided SDS & material labels, as well as commonly found composition impurities surrounding these materials in the COC determination:

- Sodium .
- Nitrate .
- Nitrite
- Sulfate
- Manganese
- Iron
- Copper
- Zink
- Molybdenum
- Boron
- Ammonia
- Fluoride
- Arsenic
- Cadmium
- Chromium
- Lead
- Nickel
- Beryllium
- Uranium

The department will like to see the areas reported to be impacted by the liquid fertilizer accidental release (North & South Bound shoulder of the roadway near the spill site) be assessed for the specified COC's to determine whether they are found to be above the department's cleanup target levels and will need to be removed.

Below is a list of contractors who can help you put together a path moving forward.

### 24-HOUR EMERGENCY RESPONSE CONTRACTORS LIST

Emergency Response Contractors are listed by the county in which they maintain an office.

Most Emergency Response Contractors can provide service to other counties and some provide service statewide.

OER does not endorse any contractor and a firm's absence or presence does not imply prejudice or impropriety.

Please follow this link: https://floridadep.gov/oer/oer/content/contractor-list

Please feel free to call me if you have any questions.



### Lina Cerquera

Florida Department of Environmental Protection South District – Office of Emergency Response Environmental Consultant <u>Lina.Cerquera@FloridaDEP.gov</u> Office: 239-344-5707 SWO (**24 Hour**) : 800-320-0519

From: Angelica Betancourt <<u>aprince@liquidplant.com</u>> Sent: Thursday, October 3, 2019 2:17 PM To: Goense, Patricia <<u>Patricia.Goense@FloridaDEP.gov</u>> Subject: Requested SDS

Please see attached SDS..

Thank you,

Angelica Betancourt The Liquid Plant, Inc. 1001 County Road 846 Immokalee, FI 34142 P:(239)657-3181 F:(239)657-6898



Email sent interoffice must adhere to the Howard Fertilizer and Chemical Email Policy Link

This email and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this email in error please notify the <u>System Administrator</u>. This message contains confidential information and is intended only for the individual named. If you are not the named addressee you should not disseminate, distribute or copy this e-mail. Please notify the sender immediately by e-mail if you have received this e-mail by mistake and delete this e-mail from your system. If you are not the intended recipient you are notified that disclosing, copying, distributing or taking any action in reliance on the contents of this information is strictly prohibited.

Attachment 3 – Temporary Monitor Well Construction Logs

RECORD OF WE	LL DRILLI	ING, CON	STRUCT	ION, AN	D COM	PLETION
SITE ID TMW-B	STATION NAME	Howard Fer		OTHER ID T	//W-Backg	round
255404703036	COUNTY			54 T-0.98040.200745		ACC -
OWNER_Howard Fertilize						
WELL DRILLING						663, EEO
START DRILLING:	DATE <u>10</u>	/ 30 / 201	<u>19</u> TIME	<u>12</u> :10	<u>pm</u> EST	
COMPLETE DRILLING:	DATE10	1 30 1 20	<u>19</u> TIME	<u>12</u> :30	pm EST	
EQUIPMENT/MATERIALS	S DECONTAMI	NATION PROC	EDURES:			
DETERGENT WASH	Alconox/Water	STEAM CL	EANED	N/A	_; OTHE	RN/A
DRILLING METHOD:						
_X AUGER (TYPE:	Hand Auger		);F	ROTARY (TY	PE:	)
PERCUSSION (TY				OTHER		900- 912
BOREHOLE DATA:	20			40 e	7	- 20
	4.0				ALE.	5.23 6.4
BOREHOLE DIAMETER:						
APPROXIMATE DEPTH TO	THE WATER TA	ABLE: 2	<u>.5</u> fee	t Well Sc	reen Depti	n: 0 to 5.2 ft
MA	TERIAL DESCRIPT	NON		FROM	то	THICKNESS
SAND, SILT, CLAY ETC	SORTING	COLOR	WET/DRY	fet	feet	feet
Sand/Silt		Black	Dry	0	1.0	1.0
Sand		White Sand	Dry	1.0	2.0	1.0
Sand		Tan Sand	Wet	2.0	5.2	3.2
	-			4		
				65 - 3		

Figure 8. Examples of forms used to record well-drilling, -construction, and -completion information, and to diagram well construction.

RECORD OF WE	ELL DRILLI	NG, CON	ISTRUCT	ION, AN	D COM	PLETION
SITE ID TMW-E	STATION NAME	Howard Fe Spill Site-C		OTHER ID T	MW-East	8472
75 QUAD N/A	COUNTY	Collie	r County	is target to the second se	STATE	Florida
OWNER Howard Fertilize						
WELL DRILLING						,
START DRILLING:	DATE <u>10</u>	/ 30 / 20	<u>19</u> TIME	<u>10</u> :41	am EST	
COMPLETE DRILLING:	DATE <u>10</u>	1 30 1 20	19TIME	<u>11</u> :00	<u>pm</u> EST	
EQUIPMENT/MATERIAL	S DECONTAMI	NATION PRO	CEDURES:			
DETERGENT WASH	Alconox/Water	STEAM CI ز	LEANED	N/A	_; OTHE	RN/A
DRILLING METHOD:						
_XAUGER (TYPE:	Hand Auger		_); F	ROTARY (TY	'PE:	)
PERCUSSION (TY	PE:		);	OTHER	0	
BOREHOLE DATA:						
BOREHOLE DIAMETER:	4.0	inches;	TOTAL DEPTI	H OF BOREH	OLE:	10.3 feet;
APPROXIMATE DEPTH TO	THE WATER TA	ABLE:	5.2 fee	t Well Scr	een - 5 to	10 ft bls
MA	TERIAL DESCRIPT	ION	- 14 	FROM	то	THICKNESS
SAND, SILT, CLAY ETC	SORTING	COLOR	WET/DRY	ket	feet	feet
Sand/Silt		Dark Brown	Dry	0	1.5	1.5
Sand/Silt		Darker Brown	Dry	1.5	2.5	1.0
Sand		Tan	Dry	2.5	4.0	1.5
Sand		Light Tan	Wet	4.0	10.3	6.3
	a 23			65 3		-
	6 53		2	42		
			0	÷ .		
				6.5		
	2 2	, ,	8	94 9		
	-		0			
	22		t	e.:		

Figure 8. Examples of forms used to record well-drilling, -construction, and -completion information, and to diagram well construction.

RECORD OF WE	LL DRILLI	NG, CON	STRUCT	ION, AN	D COM	PLETION
SITE ID TMW-W	STATION NAME	Howard Fer Spill Site-Co		OTHER ID T	//W-West	8472
100-30420304	COUNTY	· ·	-	54		14640
OWNER_Howard Fertilize						
WELL DRILLING						, -
START DRILLING:	20 - S	2 - 313 - 214 - 514 -	265	936 679 947	149	
COMPLETE DRILLING:	DATE <u>10</u>	1 30 1 20	<u>19</u> TIME	<u>10 30</u>	am EST	
EQUIPMENT/MATERIAL	S DECONTAMI	NATION PROC	EDURES			
DETERGENT WASH	Alconox/Water	) STEAM CL	EANED	N/A	_; OTHE	R
DRILLING METHOD:						
_XAUGER (TYPE:	Hand Auger		); F	ROTARY (TY	PE:	)
PERCUSSION (TY				OTHER		
BOREHOLE DATA:	2			49 <u>1</u> 7		2
	4.0	in short				5.32 faat
BOREHOLE DIAMETER:					OLE	5.32 feet;
APPROXIMATE DEPTH TO	THE WATER 17	ABLE: <u>3</u>	.5 tee	t .		
INC21001	TERIAL DESCRIPT	NON		FROM	то	THICKNESS
SAND, SILT, CLAY ETC	SORTING	COLOR	WET/DRY	feet	feet	feet
Sand/Silt		Black/Dark Brown	Dry	0	1.0	1.0
Sand		White Sand	Dry	1.0	2.0	1.0
Sand		Tan Sand	Wet	2.0	5.3	3.3
	2					
				14 Y		3
					]	
						10). 11)

Figure 8. Examples of forms used to record well-drilling, -construction, and -completion information, and to diagram well construction.

Attachment 4 – Temporary Monitor Well Construction Logs

### DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

SITE	oward Fe	rtilizer S	Spill			SI		ppro	x 1 mile	e South	on S	R29 a	and S	R82 Co	orkscrew, FL
	TMW-Bac		piii	SA	MPLE ID:			ppro	× 1 1111	o o o d d d				-2019	
WELL NO.		Nground		34			SING DA	ТΔ				DATE.	10-01	-2015	
	R (inches): 2.0 L <b>UME PURGE:</b>		TER (inches):	3/8	WELL SC DEPTH:	REEN 0 fe	INTERVAL et to 5.0 fe	et	STATIC C TO WATE	ER (feet):	2.76		PURGE OR BAI	E PUMP TY ILER:	PE PP
(only fill ou EQUIPME	t if applicable) <b>NT VOLUME Pl</b>		= (	5.34	feet –		2.76	fee	et) X	0.16 JBING LEI	q	allons/fo	oot = V CELL	0.4 VOLUME	gallons
(only fill ou	t if applicable)			= 0.0	)1 gallons +	( 0.006	gallons/foot	Х	9.0	feet	) +	0.2	gal	lons = 0	3 gallons
	JMP OR TUBIN WELL (feet):	G 4.0	FINAL PUI DEPTH IN			4.0	PURGIN		0841		D AT:	0930		OTAL VOL URGED (g	UME allons): 3.5
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEF Tr WA ⁻ (fe	O TER (sta	pH andard nits)	TEMP. (°C)	(circ μm	OND. de units) hos/cm μS/cm	DISSOL OXYG (circle u mg/L % satur	EN Inits) or		BIDITY ⁻ Us)	COLOI (describ	
0901	1.5	1.5	0.1	2.7	76 7	.06	25.6	Ę	555	2.9	0	16	5.8	Lt. yello	w None
0910	1.0	2.5	0.1	2.7	-	.07	25.7		555	2.63		-	0.1	Lt. yello	
0901	0901         1.0         3.5         0.1         2.76         6.98         25.8         554         2.97         6.22         Lt. yellow         None														
TUBING I	PACITY (Gallon NSIDE DIA. CAR	PACITY (Gal./		<b>1"</b> = 0 0006;		6" = 0.06 0014;	6; <b>2"</b> = 0.1 <b>1/4"</b> = 0.002		<b>3" =</b> 0.37; <b>5/16" =</b> 0.		65; <b>{</b> / <b>8''</b> = 0.	<b>5" =</b> 1.02 006;	2; 6" 1/2" =		<b>12"</b> = 5.88 5/8" = 0.016
PURGING	EQUIPMENT C	ODES: B	s = Bailer;	BP = Bla	dder Pump		SP = Electric		ersible Pu	mp; F	P <b>P =</b> Pe	ristaltic	Pump;	<b>0</b> = 01	her (Specify)
	BY (PRINT) / A			SAMPL	ER(S) SIG		Ξ(S):			SAMP		- 0005		SAMPLIN	G
	Agustin / M&D I	Industrial Serv	rices		tor L.	Som	lgusti	- n10-3				: 0935		ENDED A	
pump or Depth in	TUBING WELL (feet):	4.0 ft			AL CODE:	LDI			Filtrati	-FILTERE on Equipm		N N		FILTER S	ZE:μm
FIELD DEC	CONTAMINATIO	DN: PUN	IP Y 🕻	l repla	aced	TUBI	NG Y	N (rep	placed)	DUPLI	CATE:	Y	′ (	N	
SAM SAMPLE	PLE CONTAINE #	R SPECIFICA			MPLE PRE		TION (includ	ir q wet	t ice) FINAL		ITENDE YSIS AI			IPLING	SAMPLE PUMF FLOW RATE
ID CODE	CONTAINERS	CODE	VOLUME	U	SED		D IN FIELD (	mL)	pН		IETHO		С	ODE	(mL per minute)
TMWB	1	Plastic	125 ml		SO4		N/A		N/A	0.41		00 5			~200
TMWB	1	Plastic	125 ml				N/A		N/A	, ,	IO3,N	,	_		~200
TMWB TMWB	1	Plastic	205 ml 500 ml		NO3 NO3		N/A N/A		N/A N/A	-	Metals Jraniur			\PP \PP	~200
TMWB	1	Plastic Plastic	250 ml		NO3 NO3		N/A N/A		N/A		Boron		_	APP APP	~200
	1	1 14540	200 111								201011		+		200
REMARKS	8:	ıI						1		<b>I</b>					
	L CODES:	AG = Amber S = Silicone; CODES:	,		ther (Specif	y)	High Density F <b>B</b> = Bailer		nylene; B <b>P</b> = Blado	LDPE = L		-		ne; <b>PP</b> omersible F	= Polypropylene;
	. The above of	F	RFPP = Rever	se Flow F	Peristaltic P	ump;	SM = Straw	Metho	d (Tubing	Gravity D			Other (S		~···,

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: <u>+</u> 0.2 units Temperature: <u>+</u> 0.2 °C Specific Conductance: <u>+</u> 5% Dissolved Oxygen: all readings  $\leq$  20% saturation (see Table FS 2200-2); optionally, <u>+</u> 0.2 mg/L or <u>+</u> 10% (whichever is greater) Turbidity: all readings  $\leq$  20 NTU; optionally <u>+</u> 5 NTU or <u>+</u> 10% (whichever is greater)

### DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

SITE NAME · H	NAME: Howard Fertilizer Spill     LOCATION: Approx 1 mile South on SR29 and SR82, Corkscrew, FL       VELL NO: TMW-East     SAMPLE ID: TMW-E   DATE: 10-31-2019													
	VELL NO: TMW-East SAMPLE ID: TMW-E DATE: 10-31-2019 PURGING DATA													
					F	VRG	SING DA	ТА						
	· · ·	DIAME	TER (inches):		WELL SC DEPTH:	REEN I 5.0 f	INTERVAL eet to 10.0 f	eet	TO WATE	ER (feet): 5.2				
(only fill ou	t if applicable)		= (	10.32	feet –	:	5.23	feet)	) X	0.16	gallons/fo		0.8	gallons
	it if applicable)	JRGE: 1 EQU				,	gallons/foot		Х TL 14.0	JBING LENGT	H) + FLO		allons =	0.29 gallons
	JMP OR TUBIN WELL (feet):	G 4.0	FINAL PUI DEPTH IN	MP OR TI	JBING	4.0	PURGIN	G		PURGING ENDED A		T	OTAL VOL	8
TIME	TIMEVOLUME PURGED (gallons)CUMUL. PURGED (gallons)DEPTH TO WATER (gpm)pH (standard units)TEMP. (°C)COND. (circle units) µmhos/cm or µS/cmDISSOLVED OXYGEN (circle units) mg/Lor mg/LorTURBIDITY (NTUS)COLOR (clescribe)ODOR (describe)11341.01.00.15.237.0927.495531.6278.0Lt. yellowNone11441.02.00.15.236.9127.655372.9722.5Lt. yellowNone													
1134	1.0	1.0	0.1	5.2	3 7	.09	27.49	Ę	553	1.62	7	8.0	Lt. yello	w None
1144	1.0	2.0	0.1	5.2	3 6	5.91	27.65	Ę	537	2.97	2	2.5	Lt. yello	w None
1154	1.0	3.0	0.1	5.2	3 6	5.93	27.82	Ę	537	2.43	2	1.7	Lt. yello	w None
1204         1.0         4.0         0.1         5.23         6.91         27.80         527         2.33         20.6         Lt. yellow         None														
TUBING I	I PACITY (Gallon NSIDE DIA. CAR EQUIPMENT C	PACITY (Gal./	Ft.): <b>1/8"</b> = 0			,	6; <b>2</b> " = 0.1 <b>1/4"</b> = 0.002 <b>SP</b> = Electric	6;	<b>5/16"</b> = 0.37; <b>5/16"</b> = 0.1	004; <b>3/8"</b> =	<b>5</b> " = 1.0 0.006; Peristaltic	1/2" =	0.010;	<b>12"</b> = 5.88 <b>5/8"</b> = 0.016 ther (Specify)
TORONO			- Daller,							тр, <b>т</b> -	i enstante	, i unip,	0-0	
	BY (PRINT) / A Agustin / M&D I		rices		FR(S) SIGN				1-2019	SAMPLING INITIATED		6	SAMPLIN	G 1211
	WELL (feet):	14.0 ft		TUBING MATER	) IAL CODE:	LDF	PE		FIELD- Filtratio	-FILTERED: on Equipment			FILTER S	ZE:μm
FIELD DE	CONTAMINATIO	DN: PUN		repla	ced	TUBI	NG Y	N (rep	placed)	DUPLICAT	E:	Y (	N	
SAM SAMPLE ID CODE	PLE CONTAINE # CONTAINERS	R SPECIFICA MATERIAL CODE	ATION VOLUME	PRESE	MPLE PRE RVATIVE SED	Т	TION (includi		t ice) FINAL pH	INTEN ANALYSIS METH	AND/OR	EQU	MPLING JIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)
TMWE	1	Plastic	125 ml		SO4		N/A	/	N/A	AM	N		APP	~200
TMWE	1	Plastic	125 ml	NC	DNE		N/A		N/A	SO4,NO3	,NO2, F		APP	~200
TMWE	1	Plastic	205 ml	HN	103		N/A		N/A	Met	als		APP	~200
TMWE	1	Plastic	500 ml	HN	103		N/A		N/A	Uran	ium	/	APP	~200
TMWE	1	Plastic	250 ml	HN	103		N/A		N/A	Bor	on	,	APP	~200
REMARKS	5: 													
	L CODES: G EQUIPMENT	S = Silicone; CODES:	Glass; CG = T = Teflon; APP = After (T RFPP = Revers	<b>O</b> = Ot hrough) F	her (Specif Peristaltic P	y) ump;	High Density F B = Bailer; SM = Straw	B	SP = Bladd	LDPE = Low [ ler Pump; Gravity Drain);	ESP = Ele		bmersible F	= Polypropylene; Pump;

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: <u>+</u> 0.2 units Temperature: <u>+</u> 0.2 °C Specific Conductance: <u>+</u> 5% Dissolved Oxygen: all readings  $\leq$  20% saturation (see Table FS 2200-2); optionally, <u>+</u> 0.2 mg/L or <u>+</u> 10% (whichever is greater) Turbidity: all readings  $\leq$  20 NTU; optionally <u>+</u> 5 NTU or <u>+</u> 10% (whichever is greater)

### DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

SITE	NAME: Howard Fertilizer Spill     LOCATION: Approx 1 mile South on SR29 and SR82, Corkscrew, FL       WELL NO: TMW-West     SAMPLE ID: TMW-W   DATE: 10-31-2019															
	WELL NO: TMW-West     SAMPLE ID: TMW-W     DATE: 10-31-2019       PURGING DATA       WELL     TUBING     WELL SCREEN INTERVAL     STATIC DEPTH     PURGE PUMP TYPE															
WEEL NO				34				ТΔ				JAIL.	10-01	-2015		
WELL DIAMETEI	R (inches): 2.0			3/8	1	REEN	INTERVAL				3.78					р
	LUME PURGE: it if applicable)	1 WELL VO	LUME = (TOT	AL WEL		– STA			,	WELL CA		ΓΥ allons/fo	vot -	0.25		gallons
	NT VOLUME PU	JRGE: 1 EQU		= PUM		-		ΤY		JBING LEN	IGTH)	+ FLOW	CELL	VOLUME		U
	JMP OR TUBIN	6	FINAL PUI		0	• ( 0.006	gallons/foot		9.0	feet) PURG		0.2		OTAL VOL		gallons
	WELL (feet):	4.5	DEPTH IN			4.5	INITIATE	ED AT:		ENDE	D AT:	1048		URGED (g		: 2.5
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	WA	O TER (sta	pH andard nits)	TEMP. (°C)	(circl μmh	OND. le units) hos/cm µS/cm	DISSOL OXYGI (circle u mg/L % satura	EN nits) <u>or</u>	TURB (NT		COLO (describ		ODOR (describe)
1030	1.0	1.0	0.1	3.		7.02	27.6		725	6.34		9.7		Lt. yello		None
1042	1.0	2.0	0.1	3.		7.01	27.6		720	6.19			69	Lt. yello		None
1048	0.5	2.5	0.1	3.1	/8 7	7.07	27.7	7	731	6.25	)	6.8	54	Lt. yello	w	None
	PACITY (Gallon NSIDE DIA. CAP			<b>1</b> " = 0		5'' = 0.06	6; <b>2</b> " = 0.1 <b>1/4"</b> = 0.002		<b>3"</b> = 0.37; <b>5/16"</b> = 0.		65; 5 <b>8''</b> = 0.	<b>"</b> = 1.02	2; 6" 1/2" =		12" = 5/8" =	
	EQUIPMENT C				adder Pump	,	SP = Electric	,		,		ristaltic F		,		pecify)
							LING DA	ATA								
	BY (PRINT) / A Agustin / M&D I		ices	SAMPL	ER(S) SIGI		E(S): loustin1	0-31-	-2019	SAMPL INITIAT		: 1054		SAMPLIN ENDED A		100
PUMP OR		4.5.9		TUBING	3		0		FIELD	-FILTERED		N		FILTER S	IZE:	μm
	WELL (feet): CONTAMINATIO	4.5 ft DN: PUN			AL CODE:	LDI TUBII		N (rep	placed)	on Equipmo DUPLIC		e: Y	(	N		
SAM	PLE CONTAINE		ATION	SA	MPLE PRE	SERVA	TION (includ	ir q wet	t ice)		TENDE			APLING	SAM	PLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL	VOLUME	PRESE	RVATIVE	Г	TOTAL VOL D IN FIELD (		FINAL pH	ANALY		ND/OR	EQU	IPMENT ODE	FLC	DW RATE per minute)
TMWW	1	Plastic	125 ml		SO4		N/A	/	N/A		AMN		ļ	APP		~200
TMWW	1	Plastic	125 ml	N	ONE		N/A		N/A	SO4,N	103,N	02, F	A	APP		~200
TMWW	1	Plastic	205 ml	H	NO3		N/A		N/A	1	Vetals		ŀ	\PP		~200
TMWW	1	Plastic	500 ml	H	NO3		N/A		N/A	U	Iraniur	n	A	APP		~200
TMWW	1	Plastic	250 ml	HI	NO3		N/A		N/A		Boron		P	APP		~200
REMARKS	S:															
	L CODES: G EQUIPMENT	AG = Amber S = Silicone; CODES:	,		ther (Specif	fy)	ligh Density F <b>B</b> = Bailer		iylene; B <b>P</b> = Bladd	LDPE = L				ne; <b>PP</b> omersible F		propylene;
NOTES: 1	. The above o		RFPP = Rever			17	SM = Straw d by Chapt		· ·		ain);	<b>0</b> = 0	ther (S	pecify)		

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: <u>+</u> 0.2 units Temperature: <u>+</u> 0.2 °C Specific Conductance: <u>+</u> 5% Dissolved Oxygen: all readings  $\leq$  20% saturation (see Table FS 2200-2); optionally, <u>+</u> 0.2 mg/L or <u>+</u> 10% (whichever is greater) Turbidity: all readings  $\leq$  20 NTU; optionally <u>+</u> 5 NTU or <u>+</u> 10% (whichever is greater)