CERTIFICATION

AGENCY: Florida Department of Transportation District One 801 North Broadway Avenue Bartow, Florida 33831-1249

I hereby certify that I am a registered professional engineer in the State of Florida and that I have supervised the preparation of, and approved the analysis, findings, opinions, conclusions and technical advice hereby reported for:

REPORT:	SR 72/Lorraine Road Intersection Control Evaluation (ICE) - Stage 1
PROJECT:	SR 72 Project Development and Environment (PD&E) Study
LOCATION:	SR 72 from East of I-75 to Lorraine Road Sarasota County, Florida
ROADWAY ID	: 17070000

MILEPOST No: 7.967

FPID No.: 444634-1-22-01

I acknowledge that the procedures and references used to develop the information contained in this memorandum are standard to the professional practice of transportation engineering as applied through professional judgement and experience.

Engineer in Responsible Charge:	Anastasiya A. Senyushkina	ICENSE ST
Professional Registration No.:	82191	No. 82191
Date:	2/5/2024	STATE OF

AIM Engineering & Surveying, Inc.

Tampa Office 201 E. Kennedy Boulevard, Suite 1800 Tampa, Florida 33602 813-627-4144 www.aimengr.com

Date:	February 5, 2024
То:	Steven Andrews, P.E. – FDOT District One DEMO Project Manager
From:	Greg Root/Anastasiya Senyushkina, P.E.
Subject:	SR 72 at Lorraine Road Intersection (Sarasota County) Stage 1+ Intersection Control Evaluation

INTRODUCTION/PROJECT BACKGROUND

This memorandum documents the Intersection Control Evaluation (ICE) conducted for the Lorraine Road intersection. This analysis was conducted in support of the SR 72 Project Development & Environment (PD&E) Study from east of I-75 to Lorraine Road in Sarasota County. The length of the study corridor is approximately 2.7 miles. This PD&E study is evaluating the costs and impacts of widening (i.e., four-laning) SR 72 from Hummingbird Avenue to Lorraine Road. This PD&E study goals are to determine the location and conceptual design of the improvement(s) that satisfy the purpose and need for the project, while also minimizing the impacts to the natural and social environment and satisfying the requirements of the National Environmental Policy Act (NEPA). This memorandum documents the Stage 1 CAP-X and SPICE analyses, as well as the detailed traffic operations analyses conducted using the SIDRA software.

EXISTING ROADWAY/INTERSECTION CHARACTERISTICS

This intersection is a four-legged intersection. Lorraine Road is the north and south legs of this intersection. The land in the northwest and northeast quadrants of the intersection is currently undeveloped. A large residential development (i.e., Skye Ranch) is currently being constructed on the east side of Lorraine Road south of SR 72. An aerial image depicting the Lorraine Road intersection is provided in **Figure 1**, which is included in **Appendix A**. Until recently, this intersection was operating under two-way stop control. A one-lane roundabout has been constructed at this location and is now open to traffic. The posted speed limit on SR 72 in the vicinity of this intersection is 55 miles per hour (mph). The posted speed limits on Lorraine Road are 55 mph (north leg) and 45 mph (south leg). SR 72 is a two-lane undivided roadway with 12-foot travel lanes and five-foot designated bicycle lanes both west and east of Lorraine Road. There are no sidewalks on either SR 72 or Lorraine Road. The context classification of this roadway is C3R (Suburban Residential). East of Lorraine Road, SR 72 has a context classification C2 (Rural) and a 55 mph speed limit.

Crash data from Signal Four Analytics was provided by District One for the years 2017 through 2021. The crash data is included in **Appendix B**. The intersection has experienced 17 crashes over this five-

year period, resulting in seven injuries and no fatalities. The most prevalent crash types are rear-end crashes (eight) and left-turn/angle crashes (five). Two crashes involved animals. There were no crashes involving bicyclists or pedestrians. The May 2022 traffic count data obtained in support of the PD&E study indicates that Traffic Signal Warrants No. 1, 2 and 3 of the Manual on Uniform Traffic Control Devices are satisfied. The existing traffic count data and the signal warrant summary sheets are also provided in **Appendix B**.

INTERSECTION CONTROL EVALUATION

The proposed typical section includes four 11-foot travel lanes (two in each direction), a 22-foot median and 12-foot shared use paths on both sides of SR 72. The FDOT-approved design speed/target speed for the proposed SR 72 typical section in this area is 45 mph. This speed is 10 mph lower than the existing posted speed limit. The following alternative intersection control strategies were initially analyzed for this intersection:

- Conventional Traffic Signal
- Signalized Restricted Crossing U-Turn (RCUT)
- Signalized Thru-Cut
- Median U-Turn (MUT)
- Partial MUT
- Bowtie
- Two-lane x two-lane roundabout

The opening year (2030) and design year (2050) Average Annual Daily Traffic (AADT) volumes documented in the SR 72 Project Traffic Analysis Report are provided in **Appendix C** along with the 2050 a.m. and p.m. peak hour volumes documented in this same report. The magnitude of the 2050 AADT volumes on Lorraine Road would require that this roadway be widened to four lanes to provide acceptable levels of service. The results of the CAP-X and SPICE analyses are summarized in **Table 1**. The CAP-X and SPICE analysis summary sheets for this intersection are provided in **Appendix D**.

	2050 V/	C Ratios	Life-Cyc	e Crashes	SSI Scores		
					Opening	Design	
Intersection Type	AM Peak Hour	PM Peak Hour	Total	Fatal & Injury	Year	Year	
Conventional Signalized Intersection	0.64	0.60	105	35	96	88	
Signalized RCUT (EW)	0.82	0.77	131	35	95	86	
Signalized Thru-Cut (EW)	0.61	0.60	n/a	n/a	95	86	
Median U-Turn (EW)	0.80	0.74	66	27	95	85	
Partial Median U-Turn (NS)	0.78	0.70	n/a	n/a	n/a	n/a	
Bowtie (EW)	0.84	0.74	n/a	n/a	96	89	
Roundabout (2EW x 2NS)	1.01	0.95	254	35	99	96	
Lowest number of crashes of all altern	natives analyzed						
n/a = No Safety Performance Function	n (SPF) available						

The signalized RCUT, signalized thru-cut, MUT, and PMUT alternatives would not provide positive speed control. Consequently, these signalized alternatives were eliminated from any further consideration. The two-lane by two-lane roundabout alternative is compatible with the single lane roundabout that was constructed at this intersection earlier this year. It is also projected to have the highest opening year and design year SSI scores.

Design year (2050) peak hour SIDRA analyses were subsequently conducted for the roundabout to determine the optimal geometry and the results are summarized in **Table 2**. With two exceptions, all of the intersection approaches are projected to operate with v/c ratios less than or equal to 1.00 during both peak hours. The westbound approach in the a.m. peak hour and the northbound approach in the p.m. peak hour are projected to be slightly overcapacity in the design year with v/c ratios equal to 1.01. Based on the magnitude of these v/c ratios, these two intersection approaches are expected to reach capacity between 2049 and 2050. The overall average peak hour intersection delays are representative of Level of Service E operations. The design year SIDRA analysis summary sheets are provided in **Appendix E**.

	Lorraine Road R	oundabout									
AM Peak Hour											
Intersection											
Approach	V/C Ratio ⁽¹⁾	Avg. Delay	LOS								
Northbound	0.87	40.7	E								
Southbound	0.91	49.3	E								
Westbound	1.01	70.4	F								
Eastbound	0.74	24.4	С								
Overall	1.01	46.7	E								
	PM Peak	Hour									
Intersection											
Approach	V/C Ratio ⁽¹⁾	Avg. Delay	LOS								
Northbound	1.01	67.4	F								
Southbound	0.38	11.6	В								
Westbound	0.83	39.0	E								
Eastbound	0.58	17.5	С								
Overall	1.01	35.9	E								

⁽¹⁾ Highest volume-to-capacity ratio of any approach movements

An initial geometric improvement concept was developed for this two-lane roundabout and is provided in **Appendix F**. The proposed roundabout geometry includes a southbound right-turn bypass lane and an eastbound right-turn bypass lane. Some additional right-of-way is required for the two-lane roundabout but this would not result in any residential or business relocations.

RECOMMENDED INTERSECTION CONTROL STRATEGY

The implementation of a two-lane roundabout is expected to provide positive speed control in this area and help to facilitate the 45 mph design speed/target speed associated with the proposed SR 72 typical section west of Lorraine Road. Reduced vehicle speeds will provide additional safety benefits for the older driving population that travels within the study corridor. The roundabout is also projected to have the highest SSI scores and is expected to result in acceptable design year peak hour vehicle delays. The implementation of a two-lane roundabout maximizes the value of the current transportation investment that has been made at this intersection with the construction of the one-lane roundabout. Consequently, the PD&E study recommends a two-lane roundabout for the Lorraine Road intersection. A Benefit/Cost analysis, required for federally funded projects, will be conducted for this intersection using updated information during the final design phase of the project.

Appendix A

Existing Intersection Aerial

Figure 1: Existing SR 72 / Lorraine Road Intersection

Appendix B

Historic Crash Data

EAR ON_STREET_ROAD_FE	ET_FROM DIRECTION	ON FROM_INTERSECTION_OF	LIGHT_CONDITION	WEATHER_CONDITI	ON ROAD_SURFA	CETYPE_OF_IMPACT	FIRST_HARMFUL_EVENT	S4_CRASH_TYPE	S4_CRASH_TYPE_SI	S4_CRASH_SEVERITY S4_INJURY_COUNT	54_BICYCLIST_COUNT	S4_PEDESTRIAN_COU
2020 CLARK RD	0	LORRAINE RD	Daylight	Cloudy	Dry	Other	Motor Vehicle in Transport	Backed Into	Other	No Injury	0	0
2021 CLARK RD	24 West	BEE RIDGE RD EXT	Daylight	Clear	Dry	Front to Rear	Motor Vehicle in Transport	Rear End	Rear End	No Injury	0	0
2021 CLARK RD	52 West	LORRAINE RD	Daylight	Cloudy	Wet	Front to Rear	Motor Vehicle in Transport	Rear End	Rear End	No Injury	0	0
2021 LORRAINE RD	198 North	CLARK RD	Dark - Not Lighted	Clear	Dry		Animal	Animal	Animal	No Injury	0	0
2017 BEE RIDGE RD EXT	0	CLARK RD	Daylight	Clear	Dry	Front to Rear	Motor Vehicle in Transport	Rear End	Rear End	No Injury	0	0
2018 CLARK RD	0	BEE RIDGE RD EXT	Daylight	Clear	Dry	Front to Rear	Motor Vehicle in Transport	Rear End	Rear End	Injury	1	0
2019 LORRAINE RD	0	SR 72 (CLARK RD)	Daylight	Clear	Dry	Front to Rear	Motor Vehicle in Transport	Rear End	Rear End	No Injury	0	0
2021 SR-72 (CLARK ROAD	0	LORRAINE ROAD	Daylight	Clear	Dry	Angle	Motor Vehicle in Transport	Right Angle/ Front to Side	Angle	Serious Injury	1	0
2021 SR 72	0	LORRAINE RD	Daylight	Clear	Dry	Front to Rear	Motor Vehicle in Transport	Rear End	Rear End	No Injury	0	0
2021 LORRAINE RD	0	SR 72	Daylight	Clear	Dry	Front to Rear	Motor Vehicle in Transport	Rear End	Rear End	No Injury	0	0
2021 SR 72 (CLARK RD)	0	LORRAINE RD	Daylight	Clear	Dry	Angle	Motor Vehicle in Transport	Left Entering	Left Turn	Injury	2	0
2019 CLARK RD	188 West	BEE RIDGE RD EXT	Daylight	Clear	Dry	Front to Rear	Motor Vehicle in Transport	Rear End	Rear End	No Injury	0	0
2019 LORRAINE RD	0	CLARK RD	Daylight	Clear	Dry	Front to Front	Motor Vehicle in Transport	Left Leaving	Left Turn	No Injury	0	0
2019 CLARK RD	205 West	LORRAINE RD	Daylight	Clear	Wet		Ditch	Off Road	Off Road	No Injury	0	0
2019 CLARK RD	241 West	BEE RIDGE RD EXT	Daylight	Clear	Dry		Other Non-Fixed Object	Single Vehicle/ Hit Animal	Other	No Injury	0	0
2020 CLARK RD	0	LORRAINE RD	Dark - Not Lighted	Rain	Wet	Angle	Motor Vehicle in Transport	Right Angle/ Fron to Side	Angle	Injury	1	0
2020 CLARK RD	0	BEE RIDGE RD EXT	Daylight	Clear	Dry	Angle	Motor Vehicle in Transport	Right Angle/ Front to Side	Angle	Injury	2	0

Appendix C

Opening Year and Design Year Traffic Volumes

FIGURE 3-4: OPENING YEAR (2030) AADT VOLUMES - BUILD ALTERNATIVE

FIGURE 3-2: DESIGN YEAR (2050) AADT VOLUMES - BUILD ALTERNATIVE

FIGURE 3-7: DESIGN YEAR (2050) AM PEAK HOUR VOLUMES - BUILD ALTERNATIVE

FIGURE 3-8: DESIGN YEAR (2050) PM PEAK HOUR VOLUMES - BUILD ALTERNATIVE

Design year weekend (i.e., Saturday) peak hour volumes were also estimated for the Twin Lakes Park entrance/exit and the Talon Boulevard/Ibis Street intersection for the Build Alternative. The methodology used to estimate the 2050 weekend peak hour volumes for these two intersections consisted of the following steps:

- Step 1 The 2022 weekday total peak hour entering volumes were calculated for both peak hours.
- Step 2 The 2050 weekday total peak hour entering volumes were calculated for both peak hours.
- Step 3 The overall growth in total peak hour weekday entering volumes was calculated for both peak hours and the average of these two values was calculated.
- Step 4 The 2022 weekend peak hour intersection approach volumes were multiplied by the average overall growth in total peak hour weekday entering volumes calculated in Step 3. This yielded estimates of the 2050 weekend peak hour intersection approach volumes.
- Step 5 The 2050 weekend peak hour intersection turning movement volumes were estimated by multiplying the 2050 weekend peak hour intersection approach volumes by the existing weekend peak hour turning movement percentages.

			AN	PEAK HO	DUR					
E	B LT	E	B TH	E	B RT	1 1	EB APPROAC	H		
Vol.	Truck %	Vol.	Vol. Truck % Vol.		Truck %	Vol.	Truck Vol.	Truck %		
212	0.06	271	0.11	398	0.12	881	90	10.2%		
W	/B LT	W	'B TH	W	'B RT	0	WB APPROAC	CH		
Vol.	Truck %	Vol.	Truck %	Vol.	Truck %	Vol.	Truck Vol.	Truck %		
387	0.02	379	0.10	206	0.10	972	66	6.8%		
N	BLT	N	BTH	N	B RT		NB APPROAC	H		
Vol.	Truck %	Vol.	Truck %	Vol.	Truck %	Vol.	Truck Vol.	Truck %		
399	0.09	214	0.02	286	0.12	899	75	8.3%		
S	BLT	S	втн	S	BRT		SB APPROAC	PROACH		
Vol.	Truck %	Vol.	Truck %	Vol.	Truck %	Vol.	Truck Vol.	Truck %		
208	0.18	296	0.09	288	0.06	792	81	10.3%		
			PN	PEAK HO	DUR					
E	BLT	E	BTH	E	B RT		EB APPROAC	Н		
Vol.	Truck %	Vol.	Truck %	Vol.	Truck %	Vol.	Truck Vol.	Truck %		
297	0.06	388	0.11	404	0.12	1089	109	10.0%		
W	'B LT	W	BTH	W	BRT	1	WB APPROAC	H		
Vol.	Truck %	Vol.	Truck %	Vol.	Truck %	Vol.	Truck Vol.	Truck %		
291	0.02	289	0.05	214	0.06	794	33	4.2%		
N	BLT	N	BTH	N	BRT	1.1.1.1.1.1	NB APPROAC	н		
Vol.	Truck %	Vol.	Truck %	Vol.	Truck %	Vol.	Truck Vol.	Truck %		
364	0.02	306	0.02	382	0.02	1052	21	2.0%		
S	BLT	SI	3 TH	S	3 RT	14	SB APPROAC	н		
Vol.	Truck %	Vol.	Truck %	Vol.	Truck %	Vol.	Truck Vol.	Truck %		
201	0.02	185	0.04	257	0.04	643	22	3.4%		

LORRAINE ROAD INTERSECTION DESIGN YEAR (2050) PEAK HOUR APPROACH TRUCK PERCENTAGES

			Year			
Mvmt	2050	2030	2045	2047	2048	
EB LT	212	175	203	206	208	
EB TH	271	209	256	262	265	
EB RT	398	197	348	368	378	
WBLT	387	112	318	346	360	
WB TH	379	328	366	371	374	
WBRT	206	100	180	190	195	
NB LT	399	183	345	367	377	
NB TH	214	75	179	193	200	
NB RT	286	85	236	256	266	
SB LT	208	91	179	190	196	
SB TH	296	100	247	267	276	
SBRT	288	209	268	276	280	

Lorraine Road Intersection - AM Peak Hour Volumes

Appendix D

CAP-X and SPICE Analysis Summary Sheets

Detailed Report - Page 1 of 4

Project Name:	SR 72 PD&E Study from East of I-75 to Lorraine Road
Project Number:	FPID No. 444634-1-22-01
Location:	SR 72 at Lorraine Road
Date:	Design Year (2050) AM Peak Hour
Number of Intersection Legs:	4
Major Street Direction:	East-West

			Tra	ffic Volume D	emand					
			Volume	(Veh/hr)			Perce	ent (%)		
	U-Turn	Le	eft	Thru	Right					
	Ŋ	4				Heavy \	/ehicles	Volume Growth		
Eastbound	0	2′	12	271	398	10.2	20%	0.00%		
Westbound	0	38	37	379	206	6.8	0%	0.00%		
Southbound	0	20	08	296	288	10.3	30%	0.00%		
Northbound	0	399		214	286	8.3	0%	0.00%		
Adjustment Factor	0.80	0.	95		0.85					
Suggested	0.80	0.	95		0.85					
	Truck to	PCE Fa	ctor		Suggested =	= 2.00		2.00		
FDC	OT Context Zone			C	3R-Suburban R	esidenti	al			
E-W / Cro	ssing East-West	Legs		Low	Low		Low			
N-S / Cros	sing North-South	n Legs		Low	Low			Low		
			2-pha	se signal	Suggested =	1800	1800			
	Lane Volume		3-pha	se signal	Suggested =	1750	1750			
			4-pha	se signal	Suggested =	1700	1700			

Capacity Analysis for Planning of Junctions

Detailed Report - Page 2 of 4

Number o	Number of Lanes for Non-roundabout Intersections																
TYPE OF INTERSECTION	0	N	orth	bou	nd	So	outh	bou	nd	E	astk	oour	nd	Westbound			
TYPE OF INTERSECTION	Sheet	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Traffic Signal	<u>FULL</u>	\angle	1	2	1		1	2	1		1	2	1		2	2	1
Signalized Restricted Crossing U-Turn	<u>E-W</u>	\checkmark			2				2	2	1	2	1	2	2	2	1
Median U-Turn	<u>E-W</u>	\checkmark	\square	2	2	/	/	2	2	2	\square	2	1	2	\square	2	1
Signalized ThruCut	<u>E-W</u>	\checkmark	1	/	2	/	1	\square	2	/	1	2	1	/	2	2	1
Ν	lumber	of L	.ane	es f	or I	nte	rch	ang	es								
TYPE OF INTERCHANGE	Shoot	N	Northbound				Southbound				Eastbound				est	oour	nd
TTPE OF INTERCHANGE	Sheet	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Capacity Analy	/sis fo	or	PI	an	ni	ng	0	f J	lui	1C ¹	tio	ons	5				
	Detailed R	epo	rt - I	Page	e 3 o	of 4											

Results for Non-roundabout Intersections														
TYPE OF INTERSECTION	Sheet	Zone 1 (North)		Zone 2 (South)		Zone 3 (East)		Zone 4 (West)		Zone 5 (Center)		Overall v/c	Ped Accomm	Bicycle
TTPE OF INTERSECTION	Oncer	CLV	V/C	CLV	V/C	CLV	V/C	CLV	V/C	CLV	V/C	Ratio	odations	
Traffic Signal	<u>FULL</u>	\nearrow	\searrow	\geq	\nearrow	\checkmark	$\mathbf{\triangleleft}$			1090	<u>0.64</u>	0.64	4.46	4.49
Signalized Restricted Crossing U-Turn	<u>E-W</u>	1414	<u>0.79</u>	1473	<u>0.82</u>	934	<u>0.52</u>	833	<u>0.46</u>			0.82	2.61	4.14
Median U-Turn	<u>E-W</u>	\nearrow	\nearrow	\nearrow	\nearrow	935	<u>0.52</u>	887	<u>0.49</u>	1439	<u>0.80</u>	0.80	2.73	4.49
Signalized ThruCut	<u>E-W</u>	\nearrow		\nearrow		\checkmark		\nearrow	\nearrow	1062	<u>0.61</u>	0.61	3.37	4.58

Capacity Analysis for Planning of Junctions

						Resul	ts for F	Rounda	abouts						
TYPE OF	Zo	ne 1 (Nor	th)	Zo	one 3 (Eas	st)	Zo	ne 2 (Sou	th)	Zo	one 4 (We	st)	Overall v/c	Ped Accomm	Bicycle
ROUNDABOUT	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Ratio	odations	
<u>2 X 2</u>	<u>1.01</u>	<u>0.99</u>		<u>0.87</u>	<u>0.87</u>		<u>0.72</u>	<u>0.73</u>		<u>0.87</u>	<u>0.87</u>		1.01	4.49	4.50

				F	Resul	ts foi	^r Inte	rchar	nges							
TYPE OF INTERCHANGE	Sheet	Zone 1 Mı	•	Zone 2 Mi	•	-	ne 3 r. 1)	Zor (Cti	-	Zone 5 Mr	•	Zone 6 Mr	(Rt g)	Overall v/c	Ped Accomm	Bicycle Accomm
TTPE OF INTERCHANGE	Sheet	CLV	V/C	CLV	V/C	CLV	V/C	CLV	V/C	CLV	V/C	CLV	V/C	Ratio		odations

Detailed Report - Page 1 of 4

Project Name:	SR 72 PD&E Study from East of I-75 to Lorraine Road
Project Number:	FPID No. 444634-1-22-01
Location:	SR 72 at Lorraine Road
Date:	Design Year (2050) AM Peak Hour
Number of Intersection Legs:	4
Major Street Direction:	North-South

			Tra	ffic Volume D	emand			
			Volume	(Veh/hr)			Perce	ent (%)
	U-Turn	Le	eft	Thru	Right			
	ฦ	¢]	1		Heavy \	/ehicles	Volume Growth
Eastbound	0	21	2	271	398	10.2	20%	0.00%
Westbound	0	38	37	379	206	6.8	0%	0.00%
Southbound	0	20)8	296	288	10.3	30%	0.00%
Northbound	0	39	99	214	286	8.3	0%	0.00%
Adjustment Factor	0.80	0.9	95		0.85			
Suggested	0.80	0.9	95		0.85			
-	Truck to	PCE Fa	ctor		Suggested =	2.00		2.00
FDC	OT Context Zone			C	3R-Suburban R	esidenti	al	
E-W / Cro	ssing East-West	Legs		Low	Low			Low
N-S / Cros	sing North-South	Legs		Low	Low			Low
			2-pha	se signal	Suggested =	1800		1800
	Lane Volume		3-pha	se signal	Suggested =	1750		1750
			4-pha	se signal	Suggested =	1700		1700

Capacity Analysis for Planning of Junctions

Detailed Report - Page 2 of 4

Number	of Lanes	for	No	n-re	oun	dak	ooui	t Int	ers	ect	ions	5					
TYPE OF INTERSECTION	Sheet	No	orth	bou	nd	So	outh	bou	nd	E	astb	oun	d	W	lestk	oour	nd
TTPE OF INTERSECTION	Sneet	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Traffic Signal	<u>FULL</u>	\checkmark	1	2	1	\square	1	2	1	\checkmark	1	2	1		2	2	1
Partial Median U-Turn	<u>N-S</u>	1	\square	2	1	1	\checkmark	2	1	\checkmark	1	2	1		2	2	1
Bowtie	<u>N-S</u>	\checkmark	\square	2	2		\checkmark	2	2			2	1			2	1

	Number	of L	.ane	es f	or l	nte	rcha	ang	es								
TYPE OF INTERCHANGE	Sheet	No	orthl	bour	۱d	So	outh	bou	nd	Ε	astb	oun	d	W	est	our	nd
TTPE OF INTERCHANGE	Sneet	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R

Capacity Analysis for Planning of Junctions

Detailed Report - Page 3 of 4

	Res	ults f	or No	on-rou	undal	oout l	Inters	ectio	ons					
TYPE OF INTERSECTION	Sheet	Zoi (No	ne 1 orth)	-	ne 2 uth)	Zone 3	8 (East)	Zone 4	(West)	Zor (Cer	ne 5 nter)	Overall v/c Ratio	Ped Accomm	Bicycle
THE OF INTERSECTION	Sileet	CLV	V/C	CLV	V/C	CLV	V/C	CLV	V/C	CLV	V/C		odations	
Traffic Signal	<u>FULL</u>	\nearrow	\searrow	\checkmark	\nearrow	\nearrow	\nearrow	\nearrow		1090	<u>0.64</u>	0.64	4.46	4.49
Partial Median U-Turn	<u>N-S</u>	977	<u>0.54</u>	773	<u>0.43</u>	\nearrow		\nearrow		1370	<u>0.78</u>	0.78	2.68	4.49
Bowtie	<u>N-S</u>	808	<u>0.57</u>	1150	<u>0.81</u>	616	<u>0.84</u>	589	<u>0.72</u>	1438	<u>0.80</u>	0.84	4.29	4.49

Capacity Analysis for Planning of Junctions

						Resul	ts for F	Rounda	bouts						
TYPE OF	Zo	one 1 (Nort	th)	Z	one 3 (Eas	st)	Zo	one 2 (Sou	th)	Z	one 4 (Wes	,	Overall v/c Ratio	Ped Accomm	Bicycle
ROUNDABOUT	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3		odations	

				ŀ	Resu	lts foi	r Inte	rchar	nges							
TYPE OF INTERCHANGE	Sheet	Zone 1 M	(Rt rg)	Zone 2 Mi	g)	Zone 3 1	(Ctr.)	Zone 4 2	(Ctr. 2)	Zone 5 Mr	•	Zone 6 Mr	(n)	Overall v/c Ratio	Ped Accomm	Bicycle
	01000	CLV	V/C	CLV	V/C	CLV	V/C	CLV	V/C	CLV	V/C	CLV	V/C			odations

Detailed Report - Page 1 of 4

Project Name:	SR 72 PD&E Study from East of I-75 to Lorraine Road
Project Number:	FPID No. 444634-1-22-01
Location:	SR 72 at Lorraine Road
Date:	Design Year (2050) PM Peak Hour
Number of Intersection Legs:	4
Major Street Direction:	East-West

			Tra	ffic Volume D	emand			
		,	Volume	(Veh/hr)			Perce	ent (%)
	U-Turn	Le	eft	Thru	Right	Heavy \	/ehicles	Volume Growth
Eastbound	0	29	97	388	404	10.0	00%	0.00%
Westbound	0	29	91	289	214	4.2	0%	0.00%
Southbound	0	20)1	185	257	3.4	0%	0.00%
Northbound	0	36	64	306	382	2.0	0%	0.00%
Adjustment Factor	0.80	0.	95		0.85			
Suggested	0.80	0.	95		0.85		\sim	
	Truck to	PCE Fa	ctor		Suggested =	= 2.00		2.00
FDC	OT Context Zone			C	3R-Suburban R	esidenti	al	
E-W / Cro	ssing East-West	Legs		Low	Low			Low
N-S / Cros	sing North-South	Legs		Low	Low			Low
			2-pha	se signal	Suggested =	1800		1800
	Lane Volume reshold		3-pha	se signal	Suggested =	1750		1750
			4-pha	se signal	Suggested =	1700		1700

Capacity Analysis for Planning of Junctions

Detailed Report - Page 2 of 4

Number o	of Lanes	for	No	n-re	oun	Idal	bou	t In	ters	sect	ion	S					
TYPE OF INTERSECTION	Chest	N	orth	bou	nd	So	outh	bou	nd	E	astk	our	hd	W	est	oour	nd
TTPE OF INTERSECTION	Sheet	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Traffic Signal	<u>FULL</u>	\angle	1	2	1		1	2	1		1	2	1		2	2	1
Signalized Restricted Crossing U-Turn E-W 2 2 2 2 1 2 1 2 2 2 1 <th2< th=""> 2 2 <th2< th=""></th2<></th2<>																	
Ν	lumber	of L	.ane	es f	or I	nte	rch	ang	es								
TYPE OF INTERCHANGE	Sheet	N	orth	bou	nd	So	outh	bou	nd	E	astk	our	hd	W	est	oour	nd
TTPE OF INTERCHANGE	Sneet	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Capacity Analy	/sis fo	or	PI	an	ni	ng	0	f J	lui	1C ¹	tio	ns	5				
	Detailed R	lepo	rt - I	Page	e 3 c	of 4											

	Res	ults f	or No	on-ro	undal	bout	Inters	sectio	ons					
TYPE OF INTERSECTION	Sheet	Zoi (No	ne 1 orth)		ne 2 uth)	Zone 3	6 (East)	Zor (We	ne 4 est)	-	ne 5 nter)	Overall v/c	Ped Accomm	Bicycle
	Oncor	CLV	V/C	CLV	V/C	CLV	V/C	CLV	V/C	CLV	V/C	Ratio	odations	
Traffic Signal	<u>FULL</u>	\checkmark	\searrow	\nearrow	\searrow	\nearrow	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	$\mathbf{>}$		1024	<u>0.60</u>	0.60	4.46	4.49
Signalized Restricted Crossing U-Turn	<u>E-W</u>	1138	<u>0.63</u>	1378	<u>0.77</u>	840	<u>0.47</u>	848	<u>0.47</u>	\nearrow		0.77	2.61	4.14
Median U-Turn	<u>E-W</u>	\checkmark		\nearrow		850	<u>0.47</u>	918	<u>0.51</u>	1326	<u>0.74</u>	0.74	2.73	4.49
Signalized ThruCut	<u>E-W</u>	\checkmark		\nearrow		\nearrow		\nearrow		1050	<u>0.60</u>	0.60	3.37	4.58

Capacity Analysis for Planning of Junctions

						Resul	ts for F	Rounda	abouts						
TYPE OF	Zo	one 1 (Nor	th)	Z	one 3 (Eas	st)	Zo	ne 2 (Sou	th)	Zo	one 4 (Wes	st)	Overall v/c	Ped Accomm	Bicycle
ROUNDABOUT	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Ratio	odations	
<u>2 X 2</u>	<u>0.60</u>	<u>0.60</u>		<u>0.77</u>	<u>0.77</u>		<u>0.95</u>	<u>0.95</u>		<u>0.84</u>	<u>0.85</u>		0.95	4.49	4.50

				F	Resul	ts for	· Inte	rchar	nges							
TYPE OF INTERCHANGE	Sheet	Zone 1 Mr	•	Zone 2 Mr	•	Zor (Cti		Zor (Cti	-	Zone 5 Mr	(Lt g)	Zone 6 Mr	(Rt g)	Overall v/c	Ped Accomm	Bicycle Accomm
TTPE OF INTERCHANGE	Sheet	CLV	V/C	CLV	V/C	CLV	V/C	CLV	V/C	CLV	V/C	CLV	V/C	Ratio		odations

Detailed Report - Page 1 of 4

Project Name:	SR 72 PD&E Study from East of I-75 to Lorraine Road
Project Number:	FPID No. 444634-1-22-01
Location:	SR 72 at Lorraine Road
Date:	Design Year (2050) PM Peak Hour
Number of Intersection Legs:	4
Major Street Direction:	North-South

			Tra	ffic Volume D	emand			
			Volume	(Veh/hr)			Perce	ent (%)
	U-Turn	Le	eft	Thru	Right			
	ฦ			Î	ſ	Heavy \	/ehicles	Volume Growth
Eastbound	0	29	97	388	404	10.0	00%	0.00%
Westbound	0	29	91	289	214	4.2	0%	0.00%
Southbound	0	20)1	185	257	3.4	0%	0.00%
Northbound	0	36	64	306	382	2.0	0%	0.00%
Adjustment Factor	0.80	0.9	95		0.85			
Suggested	0.80	0.9	95		0.85			
	Truck to	PCE Fa	ctor		Suggested =	2.00		2.00
FDC	OT Context Zone			C	3R-Suburban R	esidenti	al	
E-W / Cro	ssing East-West	Legs		Low	Low			Low
N-S / Cros	sing North-South	Legs		Low	Low			Low
			2-pha	se signal	Suggested =	1800		1800
	Lane Volume nreshold		3-pha	se signal	Suggested =	1750		1750
			4-pha	se signal	Suggested =	1700		1700

Capacity Analysis for Planning of Junctions

Detailed Report - Page 2 of 4

Number	of Lanes	for	No	n-re	oun	dak	ooui	t Int	ers	ect	ions	5					
TYPE OF INTERSECTION	Sheet	No	orth	bou	nd	So	outh	bou	nd	E	astb	oun	d	W	lestk	oour	nd
TTPE OF INTERSECTION	Sneet	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Traffic Signal	<u>FULL</u>	\checkmark	1	2	1	\square	1	2	1	\checkmark	1	2	1		2	2	1
Partial Median U-Turn	<u>N-S</u>	1		2	1	1	\checkmark	2	1	\nearrow	1	2	1		2	2	1
Bowtie	<u>N-S</u>	\checkmark	\square	2	2		\checkmark	2	2			2	1			2	1

	Number	of L	.ane	es f	or l	nte	rcha	ang	es								
	Sheet	No	orthl	bour	۱d	So	outh	bou	nd	Ε	astb	oun	d	W	est	our	nd
TYPE OF INTERCHANGE	Sneet	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R

Capacity Analysis for Planning of Junctions

Detailed Report - Page 3 of 4

	Res	ults f	or No	on-rou	undal	bout	Inters	ectio	ons					
TYPE OF INTERSECTION	Sheet	-	ne 1 orth)	-	ne 2 uth)	Zone 3	8 (East)	Zone 4	(West)	Zor (Cer	ne 5 nter)	Overall v/c Ratio	Ped Accomm	Bicycle
THE OF INTERSECTION	Sheet	CLV	V/C	CLV	V/C	CLV	V/C	CLV	V/C	CLV	V/C			odations
Traffic Signal	FULL	\checkmark	\searrow	\checkmark	\checkmark	\nearrow	\nearrow	$\mathbf{>}$		1024	<u>0.60</u>	0.60	4.46	4.49
Partial Median U-Turn	<u>N-S</u>	796	<u>0.44</u>	797	<u>0.44</u>	\checkmark				1226	<u>0.70</u>	0.70	2.68	4.49
Bowtie	<u>N-S</u>	1035	<u>0.73</u>	905	<u>0.64</u>	454	<u>0.64</u>	658	<u>0.71</u>	1327	<u>0.74</u>	0.74	4.29	4.49

Capacity Analysis for Planning of Junctions

						Resul	ts for F	Rounda	abouts						
TYPE OF	Zo	one 1 (Nort	:h)	Z	one 3 (Eas	it)	Zo	one 2 (Sou	th)	Z	one 4 (Wes	,	Overall v/c Ratio	Ped Accomm	Bicycle
ROUNDABOUT	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3	Lane 1	Lane 2	Lane 3		odations	

				ŀ	Resul	ts for	· Inte	rchar	nges							
TYPE OF INTERCHANGE	Sheet	Zone 1 M	(Rt rg)	Zone 2 Mr	(Lt ·g)	Zone 3 1	(Ctr.)	Zone 4 2	(Ctr. 2)	Zone 5 Mr	• •	Zone 6 Mr	(Rt ˈɡ)	Overall v/c Ratio	Ped Accomm	Bicycle
	Sheet	CLV	V/C	CLV	V/C	CLV	V/C	CLV	V/C	CLV	V/C	CLV	V/C			odations

				afety Performance for In	Results								
					Results liction results for each altern	ativo							
						ative							
				-	ct Information				r			Legen	
ject Name:		om East of I-75 to Lorrai	ne Road	Intersection Type					_	At-Gra	de Intersection	AADT >= 7	
ersection:	Lorraine Road			Opening Year							2030	AADT >= 5	
ncy:	FDOT District One	22.04		Design Year						Ou Links a su	2050	AADT >= 2	
ject Reference:	FPID No.: 444634-1-2	22-01		Facility Type Number of Legs					-	On Orban ar	nd Suburban Arterial	AADT >= 1	
r: te:	Sarasota County Florida	4-leg	AADT > 0%										
e:	Florida 1-Way/2-Way 2-way Intersecting 2-way 1/30/2024 # of Major Street Lanes (both directions) 5 or fewer												
lyst:	AIM Engineering & S	than 50 mph											
		AIM Engineering & Surveying, Inc. Major Street Approach Speed Less than 50 mph Crash Prediction Summary SSI Score											
		AADT Within SPF Prediction Range?											
Constant Charter and	Creat True	On an in a Marca	Design	Tatal Dusing thifs Cools	Creak Dradiation Daula	AADT Within SI	PF Prediction Range?		Opening	Design	Devel		
Control Strategy	Crash Type	Opening Year	Design Year	Total Project Life Cycle	Crash Prediction Rank	(Open Year)	(Design Year)	Source of Prediction	Year	Year	Rank		
						(Open real)	(Design real)						
Traffic Signal	Total	3.33	6.74	104.92	4	Yes	Yes	Calibrated SPF	<u>96</u>	<u>88</u>	3		
	Fatal & Injury	1.11	2.30	35.43	T				<u> </u>	<u> </u>	5		
2 Jan - Davidahavit	Total	8.09	16.20	253.90	2	N	No.	Lines librate d CDE	00	00	1		
2-lane Roundabout	Fatal & Injury	1.07	2.30	35.07	Z	Yes	Yes	Uncalibrated SPF	<u>99</u>	<u>96</u>	T		
	Total	2.10	4.25	66.10	1			c: :	05		C		
Median U-Turn (MUT)	Fatal & Injury	0.84	1.75	26.93		N/A	N/A	CMF	<u>95</u>	<u>85</u>	6		
Cignolized DCUT	Total	3.72	9.00	130.99	2	Ver	No	Uppolibrated CDF	05	00	Λ		
Signalized RCUT	Fatal & Injury	0.95	2.50	35.29	5	Yes	No	Uncalibrated SPF	<u>95</u>	<u>86</u>	4		
Signalized Thru-Cut	Total	No SPF	No SPF	No SPF		N/A	N/A	N/A	05	86			
Signalized Thi d-Cut	Fatal & Injury	No SPF	No SPF	No SPF		N/A	N/A	N/A	<u>95</u>	<u>86</u>	J		
	Total	No SPF	No SPF	No SPF		N/A	N/A	N/A	<u>96</u>	89	2		
Bowtie	Fatal & Injury	No SPF	No SPF	No SPF		,,,			<u> </u>		۷.		

Legend
AADT >= 75%
AADT >= 50%
AADT >= 25%
AADT >= 10%
AADT > 0%

Appendix E

Design Year SIDRA Analysis Summary Sheets

SITE LAYOUT

V Site: 101 [Lorraine Road (Site Folder: General)] Design Year (2050) Build Alternative 1B (SB & EB RT Bypass Lanes) - AM Peak Hour Site Category: (None)

Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AIM ENGINEERING AND SURVEYING | Licence: NETWORK / 1PC | Created: Thursday, September 7, 2023 10:51:36 AM Project: T:\PROJECTS\2 - DISTRICT 1\D1_SR 72_PD&E\Traffic\ICE\Lorraine Rd\SIDRA Analyses\Lorraine_2050_Build Alt 1B_AM Pk Hr_7_7_2023.sip9

MOVEMENT SUMMARY

Site: 101 [Lorraine Road (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Design Year (2050) Build Alternative 1B (SB & EB RT Bypass Lanes) - AM Peak Hour Site Category: (None) Roundabout

Vehicle Movement Performance Mov Turn Mov Level of 95% Back Of Prop. Demand Arrival Deg. Aver. Eff Aver. Aver D Class Satn Delay Service Queue Que No. of Flows Flows Stop Speed [Total HV] [Total HV i Rate [Veh. Dist] Cycles v/c sec /eh mph South: Lorraine Road 429 9.0 429 9.0 LOS E 2.50 3 L2 All MCs 0.869 37.8 9.6 255.2 0.95 1.39 21.7 All MCs 230 2.0 LOS E 8 T1 230 20 0.869 39 1 96 255.2 0.94 1.36 2 42 22 4 18 **R**2 All MCs 308 12.0 308 12.0 0.857 46.1 LOS E 8.7 232.2 0.94 1.35 2.37 22.3 967 8.3 967 8.3 0.869 40.7 LOS E 255.2 0.94 Approach 96 1.37 2 44 22.0 East: SR 72 L2 All MCs LOS F 4.29 416 2.0 416 20 1.012 65.0 193 497 8 1.00 2.01 17.3 1 6 T1 All MCs 408 10.0 408 10.0 1.012 71.6 LOS F 19.3 497.8 1.00 1.98 4.21 16.9 16 **R**2 All MCs 222 10.0 222 10.0 1.012 78.5 LOS F 15.9 428.8 1.00 1.97 4.15 16.6 1045 6.8 Approach 1045 6.8 1.012 70.4 LOS F 19.3 497.8 1.00 1.99 4.23 17.0 North: Lorraine Road 7 L2 All MCs 224 18.0 224 18.0 0.909 75.9 LOS F 5.0 141.3 0.96 1.43 2.60 15.9 4 T1 All MCs 318 9.0 318 9.0 0.909 62.5 LOS F 6.2 166.0 0.96 1.43 2.64 18.2 LOS C 14 R2 All MCs 310 6.0 310 6.0 0.547 16.4 2.8 73.3 0.75 0.86 1.18 28.6 Approach 852 10.3 852 10.3 0.909 49.3 LOS E 6.2 166.0 0.88 1.22 2.10 20.0 West: SR 72 5 L2 All MCs 228 6.0 228 6.0 0.575 19.0 LOS C 2.7 72.2 0.77 0.91 1.24 26.2 All MCs 2 T1 291 11.0 291 11.0 0.575 27.7 LOS D 2.7 72.2 0.78 0.93 1.26 26.8 12 R2 All MCs 428 12.0 428 12.0 0.738 24.9 LOS C 5.5 150.2 0.85 1.06 1.71 25.6 1.46 Approach 947 10.2 947 10.2 LOS C 150.2 0.81 0.98 0 738 244 5.5 26.1 LOS E 3811 8.8 3811 8.8 1.012 46.7 19.3 497.8 0.91 1.41 2.61 20.7 All Vehicles

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AIM ENGINEERING AND SURVEYING | Licence: NETWORK / 1PC | Processed: Tuesday, July 11, 2023 12:25:07 PM Project: T:\PROJECTS\2 - DISTRICT 1\D1_SR 72_PD&E\Traffic\Roundabout Analysis\Design Year\Updated Analyses\Lorraine_2050_Build Alt 1B_AM Pk Hr_7_7_2023.sip9

SITE LAYOUT

V Site: 101 [Lorraine Road (Site Folder: General)]

Design Year (2050) Build Alternative 1B (SB & EB RT Bypass Lanes) - PM Peak Hour Site Category: (None) Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AIM ENGINEERING AND SURVEYING | Licence: NETWORK / 1PC | Created: Thursday, September 7, 2023 11:49:25 AM Project: T:\PROJECTS\2 - DISTRICT 1\D1_SR 72_PD&E\Traffic\Roundabout Analysis\Design Year\Updated Analyses\Lorraine_2050_Build Alt 1B_PM Pk Hr_7_7_2023.sip9

MOVEMENT SUMMARY

Site: 101 [Lorraine Road (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Design Year (2050) Build Alternative 1B (SB & EB RT Bypass Lanes) - PM Peak Hour Site Category: (None)

Roundabout

Mov ID	Turn	Mov Class	Demand Flows		Arrival Flows		Deg. Satn	Aver. Delay	Level of Service	95% Back Of Queue		Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
			[Total veh/h	HV]	[Total HV] veh/h %		v/c	sec	CENTRE	(Veh. veh	Dist] ft	atore	Rate	Cycles	mph
South	: Lorra	ine Road													
3	L2	All MCs	379	2.0	379	2.0	1.006	64.1	LOS F	18.9	481.1	1.00	1.96	4.20	17.6
8	T1	All MCs	319	2.0	319	2.0	1.006	65.9	LOS F	18.9	481.1	1.00	1.91	4.06	17.8
18	R2	All MCs	398	2.0	398	2.0	0.991	71.7	LOS F	16.3	413.9	0.99	1.83	3.82	17.8
Approach		1096	2.0	1096	2.0	1.006	67.4	LOS F	18.9	481.1	1.00	1.90	4.02	17.7	
East:	SR 72														
1	L2	All MCs	303	2.0	303	2.0	0.834	37.7	LOS E	6.9	177.1	0.91	1.25	2.09	21.7
6	T1	All MCs	301	5.0	301	5.0	0.834	37.6	LOS E	6.9	177.1	0.90	1.25	2.10	22.5
16	R2	All MCs	223	6.0	223	6.0	0.834	42.5	LOS E	6.6	173.6	0.90	1.25	2.10	22.7
Approach		827	4.2	827	4.2	0.834	39.0	LOS E	6.9	177.1	0.90	1.25	2.09	22.3	
North:	Lorra	ine Road													
7	L2	All MCs	209	2.0	209	2.0	0.382	12.0	LOS B	1.6	40.4	0.69	0.74	0.88	28.3
4	T1	All MCs	193	4.0	193	4.0	0.382	13.7	LOS B	1.6	40.4	0.71	0.77	0.91	30.0
14	R2	All MCs	268	4.0	268	4.0	0.372	9.7	LOSA	1.6	42.1	0.64	0.61	0.76	31.3
Approach		670	3.4	670	3.4	0.382	11.6	LOS B	1.6	42.1	0.68	0.70	0.84	29.9	
West:	SR 72	÷													
5	L2	All MCs	309	6.0	309	6.0	0.579	16.1	LOS C	3.6	94.7	0.76	0.85	1.24	27.0
2	T1	All MCs	404	11.0	404	11.0	0.579	23.2	LOS C	3.6	94.7	0.75	0.84	1.24	28.8
12	R2	All MCs	421	12.0	421	12.0	0.555	13.1	LOS B	3.7	100.9	0.69	0.70	1.07	29.7
Approach		1134	10.0	1134	10.0	0.579	17.5	LOS C	3.7	100.9	0.73	0.79	1.18	28.6	

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AIM ENGINEERING AND SURVEYING | Licence: NETWORK / 1PC | Processed: Tuesday, July 11, 2023 12:32:27 PM Project: T:\PROJECTS\2 - DISTRICT 1\D1 SR 72 PD&E\Traffic\Roundabout Analysis\Design Year\Updated Analyses\Lorraine 2050 Build Alt 1B_PM Pk Hr_7_7_2023.sip9

Appendix F

Preliminary Roundabout Concept and Performance Checks

023 8:42:54 AM Eric.Benson WorksetsVFD0TV44463412201 SR72-PDEVroadwayVAUT0SP01

123 10:47:18 AM Eric.Benson Worksets/FD0T.44463412201 SR72-PDE\roadwav\AUT0SP01